A transdermal drug delivery system (TDDS) is generally designed to deliver an active pharmaceutical ingredient (API) through the skin for systemic action. Permeation of an API through the skin is controlled by adjusting drug concentration, formulation composition, and patch design. A bilayer, drug-in-adhesive TDDS design may allow improved modulation of the drug release profile by facilitating varying layer thicknesses and drug spatial distribution across each layer.
View Article and Find Full Text PDFObjective: These in vitro studies compared abuse-deterrent properties of REMOXY ER (extended-release oxycodone), a novel, high-viscosity gel formulation, versus the two currently marketed ER oxycodone formulations.
Methods: Tampering methods were tailored to each product to maximize oxycodone release with the least complexity, time, and effort, based on the physical/chemical properties of each formulation. Oral abuse was simulated by extracting oxycodone from each manipulated formulation in Common Ingestible Liquids and in Advanced Solvents (not ingestible and requiring additional separation).
Polyvinyl alcohol (PVAL) has not been investigated in a binary formulation as a concentration-enhancing polymer owing to its high melting point/high viscosity and poor organic solubility. Due to the unique attributes of the KinetiSol® dispersing (KSD) technology, PVAL has been enabled for this application and it is the aim of this paper to investigate various grades for improvement of the solubility and bioavailability of poorly water soluble active pharmaceutical ingredients. Solid amorphous dispersions were created with the model drug, itraconazole (ITZ), at a selected drug loading of 20%.
View Article and Find Full Text PDFThe application of a polymeric film to a solid oral dosage form can be an effective technique to modify drug release. Most polymers used for such purposes are amorphous in nature and are subject to physical aging. This physical aging phenomenon has been shown to cause changes not only in the mechanical and drug release properties of polymeric films, but also the permeability of these films due to a densification and decrease in free volume of the polymer as the material relaxes to an equilibrated thermodynamic state.
View Article and Find Full Text PDFThe purpose of this study was to investigate the physical stability of a coating system consisting of a blend of two sustained release acrylic polymers and its influence on the drug release rate of theophylline from coated pellets. The properties of both free films and theophylline pellets coated with the polymer blend were investigated, and the miscibility was determined via differential scanning calorimetry. Eudragit RS 30 D was plasticized by the addition of Eudragit NE 30 D, and the predicted glass transition temperature (T(g)) of the blend was similar to the experimental values.
View Article and Find Full Text PDFThe objective of this study was to investigate the influence of various grades of fumed silicon dioxide on the drug release rate and physical aging of theophylline pellets coated with Eudragit RS 30 D and RL 30 D. Free films were assessed for both physicomechanical properties and water vapor permeability with respect to time and storage conditions. The release rate of theophylline was influenced by the physical properties of the silicon dioxide employed.
View Article and Find Full Text PDFThe objective of this study was to investigate the influence of two proteins, albumin and type B gelatin, on the physical aging of EUDRAGIT RS 30 D and RL 30 D coated theophylline pellets. The physicomechanical properties of sprayed films, thermal properties of cast films, influence of proteins on the zeta potential and particle size of the dispersion, and the release of proteins from cast films under simulated dissolution conditions were investigated. The release rate of theophylline decreased significantly over time from pellets coated with an acrylic dispersion containing 10% albumin when there was no acidification of the acrylic dispersion; however, when pellets were coated with an acidified EUDRAGIT/albumin dispersion, the theophylline release rate was stable for dosage forms stored in the absence of humidity.
View Article and Find Full Text PDFFilms containing polyethylene oxide (PEO) and a model drug, either guaifenesin (GFN) or ketoprofen (KTP), were prepared by hot-melt extrusion. The thermal properties of the hot-melt extruded films were investigated using differential scanning calorimetry (DSC). Scanning electron microscopy (SEM) was used to examine the surface morphology of the films, and wide angle X-ray diffraction (XRD) was used to investigate the crystalline properties of the polymer, drugs and physical mixtures as well as the solid state structure of the films.
View Article and Find Full Text PDFThe objective of this research project was to determine the physicochemical properties and investigate the drug release mechanism from ethyl cellulose (EC) matrix tablets prepared by either direct compression or hot-melt extrusion (HME) of binary mixtures of water soluble drug (guaifenesin) and the polymer. Ethyl cellulose was separated into "fine" or "coarse" particle size fractions corresponding to 325-80 and 80-30 mesh particles, respectively. Tablets containing 30% guaifenesin were prepared at 10, 30, or 50 kN compaction forces and extruded at processing temperatures of 80-90 and 90-110 degrees C.
View Article and Find Full Text PDF