Motivation: Prediction of node and graph labels are prominent network science tasks. Data analyzed in these tasks are sometimes related: entities represented by nodes in a higher-level (higher scale) network can themselves be modeled as networks at a lower level. We argue that systems involving such entities should be integrated with a 'network of networks' (NoNs) representation.
View Article and Find Full Text PDFBMC Bioinformatics
January 2021
Background: Network alignment (NA) can transfer functional knowledge between species' conserved biological network regions. Traditional NA assumes that it is topological similarity (isomorphic-like matching) between network regions that corresponds to the regions' functional relatedness. However, we recently found that functionally unrelated proteins are as topologically similar as functionally related proteins.
View Article and Find Full Text PDFIn this study, we deal with the problem of biological network alignment (NA), which aims to find a node mapping between species' molecular networks that uncovers similar network regions, thus allowing for the transfer of functional knowledge between the aligned nodes. We provide evidence that current NA methods, which assume that topologically similar nodes (i.e.
View Article and Find Full Text PDFBiological network alignment (NA) aims to identify similar regions between molecular networks of different species. NA can be local or global. Just as the recent trend in the NA field, we also focus on global NA, which can be pairwise (PNA) and multiple (MNA).
View Article and Find Full Text PDFNetwork alignment (NA) compares networks with the goal of finding a node mapping that uncovers highly similar (conserved) network regions. Existing NA methods are homogeneous, i.e.
View Article and Find Full Text PDF