We provide a comprehensive tumor-intrinsic kinome landscape that provides a roadmap for the use of kinase inhibitors in PDAC treatment approaches.
View Article and Find Full Text PDFThe kinome is a dynamic system of kinases regulating signaling networks in cells and dysfunction of protein kinases contributes to many diseases. Regulation of the protein expression of kinases alters cellular responses to environmental changes and perturbations. We configured a library of 672 proteotypic peptides to quantify >300 kinases in a single LC-MS experiment using ten micrograms protein from human tissues including biopsies.
View Article and Find Full Text PDFNumerous aspects of cellular signaling are regulated by the kinome-the network of over 500 protein kinases that guides and modulates information transfer throughout the cell. The key role played by both individual kinases and assemblies of kinases organized into functional subnetworks leads to kinome dysregulation driving many diseases, particularly cancer. In the case of pancreatic ductal adenocarcinoma (PDAC), a variety of kinases and associated signaling pathways have been identified for their key role in the establishment of disease as well as its progression.
View Article and Find Full Text PDFNearest neighbor-based similarity searching is a common task in chemistry, with notable use cases in drug discovery. Yet, some of the most commonly used approaches for this task still leverage a brute-force approach. In practice this can be computationally costly and overly time-consuming, due in part to the sheer size of modern chemical databases.
View Article and Find Full Text PDFPediatric Crohn's disease (CD) is characterized by a severe disease course with frequent complications. We sought to apply machine learning-based models to predict risk of developing future complications in pediatric CD using ileal and colonic gene expression. Gene expression data was generated from 101 formalin-fixed, paraffin-embedded (FFPE) ileal and colonic biopsies obtained from treatment-naïve CD patients and controls.
View Article and Find Full Text PDFThe human kinome, with more than 500 proteins, is crucial for cell signaling and disease. Yet, about one-third of kinases lack in-depth study. The Data and Resource Generating Center for Understudied Kinases has developed multiple resources to address this challenge including creation of a heavy amino acid peptide library for parallel reaction monitoring and quantitation of protein kinase expression, use of understudied kinases tagged with a miniTurbo-biotin ligase to determine interaction networks by proximity-dependent protein biotinylation, NanoBRET probe development for screening chemical tool target specificity in live cells, characterization of small molecule chemical tools inhibiting understudied kinases, and computational tools for defining kinome architecture.
View Article and Find Full Text PDFProtein kinases are a primary focus in targeted therapy development for cancer, owing to their role as regulators in nearly all areas of cell life. Recent strategies targeting the kinome with combination therapies have shown promise, such as trametinib and dabrafenib in advanced melanoma, but empirical design for less characterized pathways remains a challenge. Computational combination screening is an attractive alternative, allowing in-silico filtering prior to experimental testing of drastically fewer leads, increasing efficiency and effectiveness of drug development pipelines.
View Article and Find Full Text PDFProtein kinase activity forms the backbone of cellular information transfer, acting both individually and as part of a broader network, the kinome. Their central role in signaling leads to kinome dysfunction being a common driver of disease, and in particular cancer, where numerous kinases have been identified as having a causal or modulating role in tumor development and progression. As a result, the development of therapies targeting kinases has rapidly grown, with over 70 kinase inhibitors approved for use in the clinic and over double this number currently in clinical trials.
View Article and Find Full Text PDFBackground: Pathologic complete response after neoadjuvant therapy is an important prognostic indicator for locally advanced rectal cancer and may give insights into which patients might be treated nonoperatively in the future. Existing models for predicting pathologic complete response in the pretreatment setting are limited by small data sets and low accuracy.
Objective: We sought to use machine learning to develop a more generalizable predictive model for pathologic complete response for locally advanced rectal cancer.
Protein kinases are a primary focus in targeted therapy development for cancer, owing to their role as regulators in nearly all areas of cell life. Kinase inhibitors are one of the fastest growing drug classes in oncology, but resistance acquisition to kinase-targeting monotherapies is inevitable due to the dynamic and interconnected nature of the kinome in response to perturbation. Recent strategies targeting the kinome with combination therapies have shown promise, such as the approval of Trametinib and Dabrafenib in advanced melanoma, but similar empirical combination design for less characterized pathways remains a challenge.
View Article and Find Full Text PDFBackground: Intraoperative specimen mammography is a valuable tool in breast cancer surgery, providing immediate assessment of margins for a resected tumor. However, the accuracy of specimen mammography in detecting microscopic margin positivity is low. We sought to develop an artificial intelligence model to predict the pathologic margin status of resected breast tumors using specimen mammography.
View Article and Find Full Text PDFSurg Obes Relat Dis
November 2023
Background: Optimal treatment of anal squamous cell carcinoma (ASCC) is definitive chemoradiation. Patients with persistent or recurrent disease require abdominoperineal resection (APR). Current models for predicting need for APR and overall survival are limited by low accuracy or small datasets.
View Article and Find Full Text PDFBackground: Postoperative gastrointestinal bleeding (GIB) is a rare but serious complication of bariatric surgery. The recent rise in extended venous thromboembolism regimens as well as outpatient bariatric surgery may increase the risk of postoperative GIB or lead to delay in diagnosis. This study seeks to use machine learning (ML) to create a model that predicts postoperative GIB to aid surgeon decision-making and improve patient counseling for postoperative bleeds.
View Article and Find Full Text PDFBackground: Ureteral injury (UI) is a rare but devastating complication during colorectal surgery. Ureteral stents may reduce UI but carry risks themselves. Risk predictors for UI could help target the use of stents, but previous efforts have relied on logistic regression (LR), shown moderate accuracy, and used intraoperative variables.
View Article and Find Full Text PDFIntra-operative specimen mammography is a valuable tool in breast cancer surgery, providing immediate assessment of margins for a resected tumor. However, the accuracy of specimen mammography in detecting microscopic margin positivity is low. We sought to develop a deep learning-based model to predict the pathologic margin status of resected breast tumors using specimen mammography.
View Article and Find Full Text PDFProtein kinases play a vital role in a wide range of cellular processes, and compounds that inhibit kinase activity emerging as a primary focus for targeted therapy development, especially in cancer. Consequently, efforts to characterize the behavior of kinases in response to inhibitor treatment, as well as downstream cellular responses, have been performed at increasingly large scales. Previous work with smaller datasets have used baseline profiling of cell lines and limited kinome profiling data to attempt to predict small molecule effects on cell viability, but these efforts did not use multi-dose kinase profiles and achieved low accuracy with very limited external validation.
View Article and Find Full Text PDFBackground: Surgical-site infection is a source of significant morbidity after colorectal surgery. Previous efforts to develop models that predict surgical-site infection have had limited accuracy. Machine learning has shown promise in predicting postoperative outcomes by identifying nonlinear patterns within large data sets.
View Article and Find Full Text PDFBackground: Readmission after colorectal surgery is common and often implies complications for patients and costs for hospitals. Previous works have created predictive models using logistic regression for this outcome but have shown limited accuracy. Machine learning has shown promise in improving predictions by identifying non-linear patterns in data.
View Article and Find Full Text PDFNuclear magnetic resonance (NMR) spectroscopy was used to monitor glutathione metabolism in alginate-encapsulated JM-1 hepatoma cells perfused with growth media containing [3,3′-13C2]-cystine. After 20 h of perfusion with labeled medium, the 13C NMR spectrum is dominated by the signal from the 13C-labeled glutathione. Once 13C-labeled, the high intensity of the glutathione resonance allows the acquisition of subsequent spectra in 1.
View Article and Find Full Text PDFBackground: Procedure-specific complications can have devastating consequences. Machine learning-based tools have the potential to outperform traditional statistical modeling in predicting their risk and guiding decision-making. We sought to develop and compare deep neural network (NN) models, a type of machine learning, to logistic regression (LR) for predicting anastomotic leak after colectomy, bile leak after hepatectomy, and pancreatic fistula after pancreaticoduodenectomy (PD).
View Article and Find Full Text PDFMotivation: Kinase-catalyzed phosphorylation of proteins forms the backbone of signal transduction within the cell, enabling the coordination of numerous processes such as the cell cycle, apoptosis, and differentiation. Although on the order of 105 phosphorylation events have been described, we know the specific kinase performing these functions for <5% of cases. The ability to predict which kinases initiate specific individual phosphorylation events has the potential to greatly enhance the design of downstream experimental studies, while simultaneously creating a preliminary map of the broader phosphorylation network that controls cellular signaling.
View Article and Find Full Text PDFThe second messenger, intracellular free calcium (Ca ), acts to transduce mitogenic and differentiation signals incoming to the colonic epithelium. A self-renewing monolayer of primary murine colonic epithelial cells is formed over a soft, transparent hydrogel matrix for the scalable analysis of intracellular Ca transients. Cultures that are enriched for stem/proliferative cells exhibit repetitive, high frequency (≈25 peaks h ), and short pulse width (≈25 s) Ca transients.
View Article and Find Full Text PDF