Although intratumoral genomic heterogeneity can impede cancer research and treatment, less is known about the effects of phenotypic heterogeneities. To investigate the role of cell migration heterogeneities in metastasis, we phenotypically sorted metastatic breast cancer cells into two subpopulations based on migration ability. Although migration is typically considered to be associated with metastasis, when injected orthotopically , the weakly migratory subpopulation metastasized significantly more than the highly migratory subpopulation.
View Article and Find Full Text PDFA critical step in breast cancer progression is local tissue invasion, during which cells pass from the epithelial compartment to the stromal compartment. We recently showed that malignant leader cells can promote the invasion of otherwise non-invasive epithelial follower cells, but the effects of this induced-invasion phenomenon on follower cell phenotype remain unclear. Notably, this process can expose epithelial cells to the stromal extracellular matrix (ECM), which is distinct from the ECM within the normal epithelial microenvironment.
View Article and Find Full Text PDFCell migration within 3D interstitial microenvironments is sensitive to extracellular matrix (ECM) properties, but the mechanisms that regulate migration guidance by 3D matrix features remain unclear. To examine the mechanisms underlying the cell migration response to aligned ECM, which is prevalent at the tumor-stroma interface, we utilized time-lapse microscopy to compare the behavior of MDA-MB-231 breast adenocarcinoma cells within randomly organized and well-aligned 3D collagen ECM. We developed a novel experimental system in which cellular morphodynamics during initial 3D cell spreading served as a reductionist model for the complex process of matrix-directed 3D cell migration.
View Article and Find Full Text PDFDuring metastasis, cells can use proteolytic activity to form tube-like "microtracks" within the extracellular matrix (ECM). Using these microtracks, cells can migrate unimpeded through the stroma. To investigate the molecular mechanisms of microtrack migration, we developed an in vitro 3D micromolded collagen platform.
View Article and Find Full Text PDFAs cancer progresses, cells must adapt to a new and stiffer environment, which can ultimately alter how normal cells within the tumor behave. In turn, these cells are known to further aid tumor progression. Therefore, there is potentially a unique avenue to better understand metastatic potential through single-cell biophysical assays performed on patient-derived cells.
View Article and Find Full Text PDFVascular smooth muscle cell (VSMC) migration and matrix degradation occurs with intimal hyperplasia associated with atherosclerosis, vascular injury, and restenosis. One proposed mechanism by which VSMCs degrade matrix is through the use of podosomes, transient actin-based structures that are thought to play a role in extracellular matrix degradation by creating localized sites of matrix metalloproteinase (MMP) secretion. To date, podosomes in VSMCs have largely been studied by stimulating cells with phorbol esters, such as phorbol 12,13-dibutyrate (PDBu), however little is known about the physiological cues that drive podosome formation.
View Article and Find Full Text PDFTumor cell invasion through the stromal extracellular matrix (ECM) is a key feature of cancer metastasis, and understanding the cellular mechanisms of invasive migration is critical to the development of effective diagnostic and therapeutic strategies. Since cancer cell migration is highly adaptable to physiochemical properties of the ECM, it is critical to define these migration mechanisms in a context-specific manner. Although extensive work has characterized cancer cell migration in two- and three-dimensional (3D) matrix environments, the migration program employed by cells to move through native and cell-derived microtracks within the stromal ECM remains unclear.
View Article and Find Full Text PDFWhile the mechanisms employed by metastatic cancer cells to migrate remain poorly understood, it has been widely accepted that metastatic cancer cells can invade the tumor stroma by degrading the extracellular matrix (ECM) with matrix metalloproteinases (MMPs). Although MMP inhibitors showed early promise in preventing metastasis in animal models, they have largely failed clinically. Recently, studies have shown that some cancer cells can use proteolysis to mechanically rearrange their ECM to form tube-like "microtracks" which other cells can follow without using MMPs themselves.
View Article and Find Full Text PDFSolid tumors consist of genetically and phenotypically diverse subpopulations of cancer cells with unique capacities for growth, differentiation, and invasion. While the molecular and microenvironmental bases for heterogeneity are increasingly appreciated, the outcomes of such intratumor heterogeneity, particularly in the context of tumor invasion and metastasis, remain poorly understood. To study heterotypic cell-cell interactions and elucidate the biological consequences of intratumor heterogeneity, we developed a tissue-engineered multicellular spheroid (MCS) co-culture model that recapitulates the cellular diversity and fully three-dimensional cell-cell and cell-matrix interactions that characterize human carcinomas.
View Article and Find Full Text PDFContractile force generation plays a critical role in cell adhesion, migration, and extracellular matrix reorganization in both 2D and 3D environments. Characterization of cellular forces has led to a greater understanding of cell migration, cellular mechanosensing, tissue formation, and disease progression. Methods to characterize cellular traction stresses now date back over 30 years, and they have matured from qualitative comparisons of cell-mediated substrate movements to high-resolution, highly quantitative measures of cellular force.
View Article and Find Full Text PDFFibrillar collagen gels, which are used extensively in vitro to study tumor-microenvironment interactions, are composed of a cell-instructive network of interconnected fibers and pores whose organization is sensitive to polymerization conditions such as bulk concentration, pH, and temperature. Using confocal reflectance microscopy and image autocorrelation analysis to quantitatively assess gel microarchitecture, we show that additional polymerization parameters including culture media formulation and gel thickness significantly affect the dimensions and organization of fibers and pores in collagen gels. These findings enabled the development of a three-dimensional culture system in which cell-scale gel microarchitecture was decoupled from bulk gel collagen concentration.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2012
Cells use cytoskeletally-generated force to adhere, migrate and remodel their environment. While cellular forces generated by cells plated on 2D substrates is well-studied, much less is known about the forces generated by cells in 3D matrices, which more closely mimic the in vivo environment. Here, an approach to characterize cellular forces in 3D using confocal reflectance microscopy is presented.
View Article and Find Full Text PDFThe physical sciences and engineering have introduced novel perspectives into the study of cancer through model systems, tools, and metrics that enable integration of basic science observations with clinical data. These methods have contributed to the identification of several overarching mechanisms that drive processes during cancer progression including tumor growth, angiogenesis, and metastasis. During tumor cell invasion - the first clinically observable step of metastasis - cells demonstrate diverse and evolving physical phenotypes that cannot typically be defined by any single molecular mechanism, and mechanobiology has been used to study the physical cell behaviors that comprise the "invasive phenotype".
View Article and Find Full Text PDFBoth substrate topography and substrate mechanical properties are known to influence cell behavior, but little is known about how they act in concert. Here, a method is presented to introduce topographical features into PA hydrogel substrates that span a wide range of physiological E values. Gel swelling plays a significant role in the fidelity of protruding micromolded features, with the most efficient pattern transfer occurring at a crosslinking concentration equal to or greater than ≈5%.
View Article and Find Full Text PDFTo adhere and migrate, cells generate forces through the cytoskeleton that are transmitted to the surrounding matrix. While cellular force generation has been studied on 2D substrates, less is known about cytoskeletal-mediated traction forces of cells embedded in more in vivo-like 3D matrices. Recent studies have revealed important differences between the cytoskeletal structure, adhesion, and migration of cells in 2D and 3D.
View Article and Find Full Text PDFWe developed a method to produce discrete fibrin microthreads, which can be seeded with human mesenchymal stem cells (hMSCs) and used as a suture to enhance the efficiency and localization of cell delivery. To assess the efficacy of fibrin microthreads to support hMSC attachment, proliferation, and survival, microthreads (100 μm diameter per microthread) were bundled together, seeded with 50,000 hMSCs for 2 h, and cultured for 5 days. Cell density on microthread bundles increased over time in culture to a maximum average density of 731 ± 101 cells/mm(2) after 5 days.
View Article and Find Full Text PDFWe have investigated the mechanisms and capabilities of optical clearing in conjunction with second harmonic generation (SHG) imaging in tendon and striated muscle. Our approach combines three-dimensional (3-D) SHG imaging of the axial attenuation and directional response with Monte Carlo simulation (based on measured bulk optical properties) of the creation intensity and propagation through the tissues. Through these experiments and simulations, we show that reduction of the primary filter following glycerol treatment dominates the axial attenuation response in both muscle and tendon.
View Article and Find Full Text PDF