This article outlines the process development leading to the manufacture of 800 g of BMS-986189, a macrocyclic peptide active pharmaceutical ingredient. Multiple N-methylated unnatural amino acids posed challenges to manufacturing due to the lability of the peptide to cleavage during global side chain deprotection and precipitation steps. These issues were exacerbated upon scale-up, resulting in severe yield loss and necessitating careful impurity identification, understanding the root cause of impurity formation, and process optimization to deliver a scalable synthesis.
View Article and Find Full Text PDFWith a renewed and growing interest in therapeutic oligonucleotides across the pharmaceutical industry, pressure is increasing on drug developers to take more seriously the sustainability ramifications of this modality. With 12 oligonucleotide drugs reaching the market to date and hundreds more in clinical trials and preclinical development, the current state of the art in oligonucleotide production poses a waste and cost burden to manufacturers. Legacy technologies make use of large volumes of hazardous reagents and solvents, as well as energy-intensive processes in synthesis, purification, and isolation.
View Article and Find Full Text PDFWe have developed an acrylamide copolymerization strategy to immobilize acrylamide labeled peptides and proteins into a hydrogel surface and detect their modifications using MALDI-TOF mass spectrometry. Copolymerization into hydrogels is robust, compatible with "off-the-shelf" chemistry, and yields materials and surfaces that are stable to aqueous or organic solvents, drying, high or low temperature, high or low pH, oxidizing agents, sonication, mechanical contact, etc. The use of acrylamide hydrogels allows immobilization of substrates in a hydrated environment that can be used both as a biological reaction matrix and as a MALDI target.
View Article and Find Full Text PDFWe describe the development of an array-based assay for the molecular level detection of tyrosine kinase activity directly from cellular extracts. Glutathione S-transferase-Crkl (GST-Crkl) fusion proteins are covalently immobilized into polyacrylamide gel pads via copolymerization of acrylic monomer and acrylic-functionalized GST-Crkl protein constructs on a polyacrylamide surface. The resulting hydrogels resist nonspecific protein adsorption, permitting quantitative and reproducible determination of Abl tyrosine kinase activity and inhibition, even in the presence of a complex cell lysate mixture.
View Article and Find Full Text PDFWe report the development and characterization of a polyacrylamide-based protein immobilization strategy for surface-bound protein assays, including concentration detection, binding affinity, and enzyme kinetics. Glutathione S-transferase (GST) fusion proteins have been labeled with an acrylic moiety and attached to acrylic-functionalized glass surfaces through copolymerization with acrylic monomer. The specific attachment of GST-green fluorescent protein (GFP) fusion protein was more than sevenfold greater than the nonspecific attachment of nonacrylic-labeled GST-GFP; 0.
View Article and Find Full Text PDF