Systematic SAR studies of in vitro factor Xa inhibitory activity around compound 1 were performed by modifying each of the three phenyl rings. A class of highly potent, selective, efficacious and orally bioavailable direct factor Xa inhibitors was discovered. These compounds were screened in hERG binding assays to examine the effects of substitution groups on the hERG channel affinity.
View Article and Find Full Text PDFParallel synthesis and iterative optimization led to the discovery of a series of potent and specific factor Xa inhibitors demonstrating excellent in vitro activity with promising pharmacokinetics.
View Article and Find Full Text PDFA class of N,N-dialkylated 4-(4-arylsulfonylpiperazine-1-carbonyl)-benzamidines and 4-((4-arylsulfonyl)-2-oxo-piperazin-1-ylmethyl)-benzamidines has been discovered as potent factor Xa inhibitors with desirable in vitro and in vivo anticoagulant activity, but with low oral bioavailability. The 5-chloroindole and 6-chlorobenzo[b]thiophene groups are optimal as the factor Xa S1 binding elements. The strategy of incorporating a side chain on the piperazine nucleus to enhance binding affinity has been examined.
View Article and Find Full Text PDFLipoxin A(4) (LXA(4)) is a structurally and functionally distinct natural product called an eicosanoid, which displays immunomodulatory and anti-inflammatory activity but is rapidly metabolized to inactive catabolites in vivo. A previously described analogue of LXA(4), methyl (5R,6R,7E,9E,11Z,13E,15S)-16-(4-fluorophenoxy)-5,6,15-trihydroxy-7,9,11,13-hexadecatetraenoate (2, ATLa), was shown to have a poor pharmacokinetic profile after both oral and intravenous administration, as well as sensitivity to acid and light. The chemical stability of the corresponding E,E,E-trien-11-yne analogue, 3, was improved over 2 without loss of efficacy in the mouse air pouch model of inflammation.
View Article and Find Full Text PDFWith the cloning of the P2Y12 receptor, the molecular basis for ADP-induced platelet aggregation is seemingly complete. Two platelet-bound ADP receptors, P2Y1 and P2Y12, operate through unique pathways to induce and sustain platelet aggregation via the glycoprotein (GP)IIb-IIIa integrin. P2Y1 operates via a glycoprotein q (Gq) pathway, activates phospholipase C, induces platelet shape change and is responsible for intracellular calcium mobilisation.
View Article and Find Full Text PDFCompound 1 was identified by high throughput screening as a novel PAI-1 inhibitor. Optimization of the B and C-segments of 1 resulted in a series of structurally simplified compounds with improved potency. The synthesis and SAR data of these compounds are presented here.
View Article and Find Full Text PDF