Publications by authors named "Shaunik Sharma"

Article Synopsis
  • Traumatic Brain Injury (TBI) can cause brain inflammation that may lead to epilepsy, which is having seizures.
  • Researchers tested a medicine called naltrexone, usually used to help with drug addiction, to see if it could stop brain inflammation and seizures after TBI.
  • They found that naltrexone helped reduce inflammation and prevent seizures in mice that got TBI, making it a potential new treatment for this problem.
View Article and Find Full Text PDF

This review examines the complex role of Pin1 in the development and treatment of cancer. Pin1 is the only peptidyl-prolyl isomerase (PPIase) that can recognize and isomerize phosphorylated Ser/Thr-Pro peptide bonds. Pin1 catalyzes a structural change in phosphorylated Ser/Thr-Pro motifs that can modulate protein function and thereby impact cell cycle regulation and tumorigenesis.

View Article and Find Full Text PDF

The electroencephalogram (EEG) is a powerful tool for analyzing neural activity in various neurological disorders, both in animals and in humans. This technology has enabled researchers to record the brain's abrupt changes in electrical activity with high resolution, thus facilitating efforts to understand the brain's response to internal and external stimuli. The EEG signal acquired from implanted electrodes can be used to precisely study the spiking patterns that occur during abnormal neural discharges.

View Article and Find Full Text PDF

Objective: Many seizing neonates fail to respond to first-line anticonvulsant medications. Phenobarbital, an allosteric modulator of γ-aminobutyric acid type A (GABA ) receptors, has low efficacy in treating neonatal seizures and causes neuronal apoptosis. Nonetheless, it is one of the most used anticonvulsants in this age group.

View Article and Find Full Text PDF

Objective: A significant number of epileptic patients fail to respond to available anticonvulsive medications. To find new anticonvulsive medications, we evaluated FDA-approved drugs not known to be anticonvulsants. Using zebrafish larvae as an initial model system, we found that the opioid antagonist naltrexone exhibited an anticonvulsant effect.

View Article and Find Full Text PDF

We have recently demonstrated the role of the Fyn-PKCδ signaling pathway in status epilepticus (SE)-induced neuroinflammation and epileptogenesis in experimental models of temporal lobe epilepsy (TLE). In this study, we show a significant disease-modifying effect and the mechanisms of a Fyn/Src tyrosine kinase inhibitor, saracatinib (SAR, also known as AZD0530), in the rat kainate (KA) model of TLE. SAR treatment for a week, starting the first dose (25 mg/kg, oral) 4 h after the onset of SE, significantly reduced spontaneously recurring seizures and epileptiform spikes during the four months of continuous video-EEG monitoring.

View Article and Find Full Text PDF

Drugs targeting host proteins can act prophylactically to reduce viral burden early in disease and limit morbidity, even with antivirals and vaccination. Transmembrane serine protease 2 (TMPRSS2) is a human protease required for SARS coronavirus 2 (SARS-CoV-2) viral entry and may represent such a target. We hypothesized that drugs selected from proteins related by their tertiary structure, rather than their primary structure, were likely to interact with TMPRSS2.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a leading cause of death in young adults and a risk factor for acquired epilepsy. Severe TBI, after a period of time, causes numerous neuropsychiatric and neurodegenerative problems with varying comorbidities; and brain homeostasis may never be restored. As a consequence of disrupted equilibrium, neuropathological changes such as circuit remodeling, reorganization of neural networks, changes in structural and functional plasticity, predisposition to synchronized activity, and post-translational modification of synaptic proteins may begin to dominate the brain.

View Article and Find Full Text PDF

Sex differences in response to neurotoxicant exposure that initiates epileptogenesis are understudied. We used telemetry-implanted male and female adult rats exposed to an organophosphate (OP) neurotoxicant, diisopropylflourophosphate (DFP), to test sex differences in the severity of status epilepticus (SE) and the development of spontaneous recurrent seizures (SRS). Females had significantly less severe SE and decreased epileptiform spikes compared with males, although females received a higher dose of DFP than males.

View Article and Find Full Text PDF

Organophosphate (OP) nerve agents are a threat to both the military and civilians. OP exposure causes cholinergic crisis and status epilepticus (SE) because of irreversible inhibition of acetylcholinesterase that can be life-threatening if left untreated. OP survivors develop long-term morbidity, such as cognitive impairment and motor dysfunction, because of oxidative stress and progressive neuroinflammation and neurodegeneration, which act as disease promoters.

View Article and Find Full Text PDF

Chemical nerve agents (CNA) are increasingly becoming a threat to both civilians and military personnel. CNA-induced acute effects on the nervous system have been known for some time and the long-term consequences are beginning to emerge. In this study, we used diisopropylfluorophosphate (DFP), a seizurogenic CNA to investigate the long-term impact of its acute exposure on the brain and its mitigation by an inducible nitric oxide synthase (iNOS) inhibitor, 1400W as a neuroprotectant in the rat model.

View Article and Find Full Text PDF

Various etiological factors, such as head injury, chemical intoxication, tumors, and gene mutation, can induce epileptogenesis. In animal models, (SE) triggers epileptogenesis. In humans, convulsive SE for >30 min can be a life-threatening medical emergency.

View Article and Find Full Text PDF

Epileptogenesis is the process of developing an epileptic condition and/or its progression once it is established. The molecules that initiate, promote, and propagate remarkable changes in the brain during epileptogenesis are emerging as targets for prevention/treatment of epilepsy. Epileptogenesis is a continuous process that follows immediately after status epilepticus (SE) in animal models of acquired temporal lobe epilepsy (TLE).

View Article and Find Full Text PDF

Status epilepticus (SE) induces neuroinflammation and epileptogenesis, but the mechanisms are not yet fully delineated. The Fyn, a non-receptor Src family tyrosine kinase (SFK), and its immediate downstream target, PKCδ are emerging as potential mediators of neuroinflammation. In order to first determine the role of Fyn kinase signaling in SE, we tested the efficacy of a SFK inhibitor, saracatinib (25mg/kg, oral) in C57BL/6J mouse kainate model of acute seizures.

View Article and Find Full Text PDF

Status epilepticus (SE) initiates epileptogenesis to transform normal brain to epileptic state which is characterized by spontaneous recurrent seizures (SRS). Prior to SRS, progressive changes occur in the brain soon after SE, for example, loss of blood-brain barrier (BBB) integrity, neuronal hyper-excitability (epileptiform spiking), neuroinflammation [reactive gliosis, high levels of reactive oxygen/nitrogen species (ROS/RNS)], neurodegeneration and synaptic re-organization. Our hypothesis was that modification of early epileptogenic events will alter the course of disease development and its progression.

View Article and Find Full Text PDF

We have recently demonstrated immediate epileptogenesis in the C57BL/6J mouse, the strain that is resistant to kainate-induced neurotoxicity. By using a repeated low dose of kainate, we produced mild and severe status epilepticus (SE) models. In the present study, we demonstrate the impact of mild and severe SE, and spontaneous convulsive/nonconvulsive seizures (CS/NCS) on structure and function of the hippocampus, entorhinal cortex, and amygdala at 7, 14 and 28 day post-SE.

View Article and Find Full Text PDF

This review synthesizes examples of pharmacological agents who have off-target effects of an epigenetic nature. We expand upon the paradigm of epigenetics to include "quasi-epigenetic" mechanisms. Quasi-epigenetics includes mechanisms of drugs acting upstream of epigenetic machinery or may themselves impact transcription factor regulation on a more global scale.

View Article and Find Full Text PDF

The C57BL/6J mouse as a model of seizure/epilepsy is challenging due to high mortality and huge variability in response to kainate. We have recently demonstrated that repeated administration of a low dose of kainate by intraperitoneal route can induce severe status epilepticus (SE) with 94% survival rate. In the present study, based on continuous video-EEG recording for 4-18 weeks from epidurally implanted electrodes on the cortex, we demonstrate that this method also induces immediate epileptogenesis (<1-5 days post-SE).

View Article and Find Full Text PDF

This review considers available evidence for mechanisms of conferred adaptive advantages in the face of specific infectious diseases. In short, we explore a number of genetic conditions, which carry some benefits in adverse circumstances including exposure to infectious agents. The examples discussed are conditions known to result in resistance to a specific infectious disease, or have been proposed as being associated with resistance to various infectious diseases.

View Article and Find Full Text PDF

An insult to the brain (such as the first seizure) causes excitotoxicity, neuroinflammation, and production of reactive oxygen/nitrogen species (ROS/RNS). ROS and RNS produced during status epilepticus (SE) overwhelm the mitochondrial natural antioxidant defense mechanism. This leads to mitochondrial dysfunction and damage to the mitochondrial DNA.

View Article and Find Full Text PDF

This manuscript considers available evidence that a specific Salmonella strain could be used as an effective orally-administered option for cancer therapy involving the brain. It has been established that Salmonella preferentially colonizes neoplastic tissue and thrives as a facultative anaerobe in the intra-tumor environment. Although Salmonella accumulates in tumors by passive processes, it is still possible for lipopolysaccharide to cause sepsis and endotoxic shock during the migration of bacteria to the tumor site.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session88qkjf2gart49kk35el8odkgbho8m7nd): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once