Publications by authors named "Shaunak Ray"

Plant cuticles are a mixture of crystalline and amorphous waxes that restrict the exchange of molecules between the plant and the atmosphere. The multicomponent nature of cuticular waxes complicates the study of the relationship between the physical and transport properties. Here, a model cuticle based on the epicuticular waxes of Petunia hybrida flower petals was formulated to test the effect of wax composition on diffusion of water and volatile organic compounds (VOCs).

View Article and Find Full Text PDF

The plant cuticle is the final barrier for volatile organic compounds (VOCs) to cross for release to the atmosphere, yet its role in the emission process is poorly understood. Here, using a combination of reverse-genetic and chemical approaches, we demonstrate that the cuticle imposes substantial resistance to VOC mass transfer, acting as a sink/concentrator for VOCs and hence protecting cells from the potentially toxic internal accumulation of these hydrophobic compounds. Reduction in cuticle thickness has differential effects on individual VOCs depending on their volatility, and leads to their internal cellular redistribution, a shift in mass transfer resistance sources and altered VOC synthesis.

View Article and Find Full Text PDF

Plants synthesize volatile organic compounds (VOCs) to attract pollinators and beneficial microorganisms, to defend themselves against herbivores and pathogens, and for plant-plant communication. In general, VOCs accumulate in and are emitted from the tissue of their biosynthesis. However, using biochemical and reverse genetic approaches, we demonstrate a new physiological phenomenon: inter-organ aerial transport of VOCs via natural fumigation.

View Article and Find Full Text PDF

Plants synthesize a diversity of volatile molecules that are important for reproduction and defense, serve as practical products for humans, and influence atmospheric chemistry and climate. Despite progress in deciphering plant volatile biosynthesis, their release from the cell has been poorly understood. The default assumption has been that volatiles passively diffuse out of cells.

View Article and Find Full Text PDF

One limitation of current biodegradable polymeric nanoparticles is their inability to effectively encapsulate and sustainably release proteins while maintaining protein bioactivity. Here we report the engineering of PLGA-polycation nanoparticles with a core-shell structure that act as a robust vector for the encapsulation and delivery of proteins and peptides. The optimized nanoparticles can load high amounts of proteins (>20 % of nanoparticles by weight) in aqueous solution without organic solvents through electrostatic interactions by simple mixing, thereby forming nanospheres in seconds with diameters <200 nm.

View Article and Find Full Text PDF