Publications by authors named "Shauna M McGillivray"

As antibiotic resistance increases and antibiotic development dwindles, new antimicrobial agents are needed. Recent advances in nanoscale engineering have increased interest in metal oxide nanoparticles, particularly zinc oxide nanoparticles, as antimicrobial agents. Zinc oxide nanoparticles are promising due to their broad-spectrum antibacterial activity and low production cost.

View Article and Find Full Text PDF

Nano- and microscale zinc oxide (ZnO) exhibits significant potential as a novel antibacterial agent in biomedical applications. However, the uncertainty regarding the underlying mechanisms of the observed antimicrobial action inhibits the realization of this potential. Particularly, the nature of interactions at the free crystalline surface and the influence of the local bacterial environment remains unclear.

View Article and Find Full Text PDF

The ClpX ATPase is critical for resistance to cell envelope targeting antibiotics in , however, it is unclear whether this is due to its function as an independent chaperone or as part of the ClpXP protease. In this study, we demonstrate that antibiotic resistance is due to formation of the ClpXP protease through construction of a ClpX complementation plasmid that is unable to interact with ClpP. Additionally, we genetically disrupted both genes, and , found in Sterne and find that the loss of either increases susceptibility to cell envelope targeting antimicrobials, although neither has as strong of a phenotype as loss of and neither gene is essential for virulence in a model of infection.

View Article and Find Full Text PDF

Nano- and microcrystalline ZnO is an inexpensive, easily synthesized material with a multitude of applications. Its usefulness in the present and future stems from its exceptional optoelectronic, structural, and chemical characteristics as well as a broad range of production techniques. One application comes from its ability to inhibit bacterial growth.

View Article and Find Full Text PDF

Understanding bacterial virulence provides insight into the molecular basis behind infection and could identify new drug targets. However, assessing potential virulence determinants relies on testing in an animal model. The mouse is a well-validated model but it is constrained by the ethical and logistical challenges of using vertebrate animals.

View Article and Find Full Text PDF

is a leading cause of infection in the United States, and due to the rapid development of resistance, new antibiotics are constantly needed. -Translation is a particularly promising antibiotic target because it is conserved in many bacterial species, is critical for bacterial survival, and is unique among prokaryotes. We have investigated the potential of KKL-40, a small-molecule inhibitor of -translation, and find that it inhibits both methicillin-susceptible and methicillin-resistant strains of KKL-40 is also effective against Gram-positive pathogens, including a vancomycin-resistant strain of , , and , although its performance with Gram-negative pathogens is mixed.

View Article and Find Full Text PDF

ClpX functions as either an independent chaperone or a component of the ClpXP protease, a conserved intracellular protease that acts as a global regulator in the bacterial cell by degrading regulatory proteins, stress response proteins and rate-limiting enzymes. Previously, we found that loss of clpX in Bacillus anthracis Sterne leads to increased susceptibility to antimicrobial agents that target the cell envelope. The aim of this study was to identify genes within the regulatory network of clpX that contribute to antimicrobial resistance.

View Article and Find Full Text PDF

Bacillus anthracis, the causative agent of anthrax, relies on multiple virulence factors to subvert the host immune defense. Using Caenorhabditis elegans as an infection model, we screened approximately 5,000 transposon mutants of B. anthracis Sterne for decreased virulence.

View Article and Find Full Text PDF

The ClpXP protease is a critical bacterial intracellular protease that regulates protein turnover in many bacterial species. Here we identified a pharmacological inhibitor of the ClpXP protease, F2, and evaluated its action in Bacillus anthracis and Staphylococcus aureus. We found that F2 exhibited synergistic antimicrobial activity with cathelicidin antimicrobial peptides and antibiotics that target the cell well and/or cell membrane, such as penicillin and daptomycin, in B.

View Article and Find Full Text PDF

The soil bacterium Bacillus thuringiensis is a pathogen of insects and nematodes and is very closely related to, if not the same species as, Bacillus cereus and Bacillus anthracis. The defining characteristic of B. thuringiensis that sets it apart from B.

View Article and Find Full Text PDF

Colonies of Bacillus anthracis Sterne allow the growth of papillation after 6 days of incubation at 30°C on Luria-Bertani medium. The papillae are due to mutations that allow the cells to overcome the barriers to continued growth. Cells isolated from papillae display two distinct gross phenotypes (group A and group B).

View Article and Find Full Text PDF

Bacillus anthracis is the causative agent of anthrax in humans and other mammals. In lethal systemic anthrax, proliferating bacilli secrete large quantities of the toxins lethal factor (LF) and oedema factor (EF), leading to widespread vascular leakage and shock. Whereas host targets of LF (mitogen-activated protein-kinase kinases) and EF (cAMP-dependent processes) have been implicated in the initial phase of anthrax, less is understood about toxin action during the final stage of infection.

View Article and Find Full Text PDF

The innate immune system in humans consists of both cellular and humoral components that collaborate to eradicate invading bacteria from the body. Here, we discover that the gram-positive bacterium Bacillus anthracis, the causative agent of anthrax, does not grow in human serum. Fractionation of serum by gel filtration chromatography led to the identification of human transferrin as the inhibiting factor.

View Article and Find Full Text PDF

Bacillus anthracis is a National Institute of Allergy and Infectious Diseases Category A priority pathogen and the causative agent of the deadly disease anthrax. We applied a transposon mutagenesis system to screen for novel chromosomally encoded B. anthracis virulence factors.

View Article and Find Full Text PDF

Background: Anthrax meningitis is the main neurological complication of systemic infection with Bacillus anthracis approaching 100% mortality. The presence of bacilli in brain autopsies indicates that vegetative bacteria are able to breach the blood-brain barrier (BBB). The BBB represents not only a physical barrier but has been shown to play an active role in initiating a specific innate immune response that recruits neutrophils to the site of infection.

View Article and Find Full Text PDF

FSH is produced by the pituitary gonadotrope to regulate gametogenesis. Production of the beta-subunit of FSH is the rate-limiting step in FSH synthesis, and a number of peptide and steroid hormones within the reproductive axis have been found to regulate transcription of the FSH beta-subunit gene. Although both activin and glucocorticoids are notable regulators of FSHbeta by themselves, we find that cotreatment results in a synergistic interaction on the mouse FSHbeta promoter at the level of the gonadotrope using transient transfection of a reporter gene into the LbetaT2 immortalized gonadotrope-derived cell line.

View Article and Find Full Text PDF

FSH is produced by the pituitary gonadotrope to regulate gametogenesis. Steroid hormones, including androgens, progestins, and glucocorticoids, have all been shown to stimulate expression of the FSHbeta subunit in primary pituitary cells and rodent models. Understanding the molecular mechanisms of steroid induction of FSHbeta has been difficult due to the heterogeneity of the anterior pituitary.

View Article and Find Full Text PDF

Appropriate expression of GnRH receptor (GnRHR) is necessary for the correct regulation of the gonadotropins, LH and FSH, by GnRH. GnRHR is primarily expressed in the gonadotrope cells of the anterior pituitary, and a number of regulatory elements important for both basal and hormonal regulation of the gene have been identified. Using the gonadotrope-derived cell line, alpha T3-1, that endogenously expresses GnRHR, we have identified an ATTA element located at -298 relative to the transcriptional start site that is essential for basal expression of the GnRHR gene.

View Article and Find Full Text PDF

FSH is critical for normal reproductive function in both males and females. Activin, a member of the TGFbeta family of growth factors, is an important regulator of FSH expression, but little is known about the molecular mechanisms through which it acts. We used transient transfections into the immortalized gonadotrope cell line LbetaT2 to identify three regions (at -973/-962, -167, and -134) of the ovine FSH beta-subunit gene that are required for full activin response.

View Article and Find Full Text PDF

FSH is a heterodimeric glycoprotein hormone secreted from the gonadotrope cell population of the anterior pituitary. Despite its crucial role in mammalian reproduction, very little is known about regulation of the FSH beta-subunit gene at the molecular level. In this report, we examine the basis for cell-specific expression of FSH beta using the mouse L beta T2 and alpha T3-1 gonadotrope-derived cell lines.

View Article and Find Full Text PDF