Publications by authors named "Shaun Stewart"

Article Synopsis
  • Mutations in a protein called calreticulin (mutCALR) cause blood disorders known as myeloproliferative neoplasms (MPNs), but there aren’t any treatments specifically targeting this mutation.
  • A new antibody called INCA033989 can specifically attack cells with the mutCALR mutation, stopping them from growing and causing problems.
  • In tests on mice, INCA033989 not only prevented issues like high blood cell counts but also showed it could help treat the disease without harming normal blood cell production.
View Article and Find Full Text PDF

CDR: complementarity determining region; FACS: fluorescence-activated cell sorting; k: association rate; k: dissociation rate; K: dissociation constant; scFv: single-chain variable fragment; SPR: surface plasmon resonance.

View Article and Find Full Text PDF

Immune checkpoint inhibitors demonstrate clinical activity in many tumor types, however, only a fraction of patients benefit. Combining CD137 agonists with these inhibitors increases anti-tumor activity preclinically, but attempts to translate these observations to the clinic have been hampered by systemic toxicity. Here we describe a human CD137xPD-L1 bispecific antibody, MCLA-145, identified through functional screening of agonist- and immune checkpoint inhibitor arm combinations.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the creation of a diverse antibody library from a single healthy individual, challenging the traditional view that more donors equal greater diversity.
  • The research emphasizes that the quantity of lymphocytes is more crucial than the number of donors in producing a functional library.
  • A high-quality phage display library was constructed, utilizing efficient extraction and amplification methods, and validated through next-generation sequencing, demonstrating successful functionality against various therapeutic targets.
View Article and Find Full Text PDF

For broad protection against infection by viruses such as influenza or HIV, vaccines should elicit antibodies that bind conserved viral epitopes, such as the receptor-binding site (RBS). RBS-directed antibodies have been described for both HIV and influenza virus, and the design of immunogens to elicit them is a goal of vaccine research in both fields. Residues in the RBS of influenza virus hemagglutinin (HA) determine a preference for the avian or human receptor, α-2,3-linked sialic acid and α-2,6-linked sialic acid, respectively.

View Article and Find Full Text PDF

Metaproteomics characterizes proteins expressed by microorganism communities (microbiome) present in environmental samples or a host organism (e.g. human), revealing insights into the molecular functions conferred by these communities.

View Article and Find Full Text PDF

Vaccines for rapidly evolving pathogens will confer lasting immunity if they elicit antibodies recognizing conserved epitopes, such as a receptor-binding site (RBS). From characteristics of an influenza-virus RBS-directed antibody, we devised a signature motif to search for similar antibodies. We identified, from three vaccinees, over 100 candidates encoded by 11 different VH genes.

View Article and Find Full Text PDF

Influenza A virus encodes M2, a proton channel that has been shown to be important during virus entry and assembly. In order to systematically investigate the role of the membrane-proximal residues in the M2 cytoplasmic tail in virus replication, we utilized scanning and directed alanine mutagenesis in combination with transcomplementation assays and recombinant viruses. The membrane-proximal residues 46 to 69 tolerated numerous mutations, with little, if any, effect on virus replication, suggesting that protein structure rather than individual amino acid identity in this region may be critical for M2 protein function.

View Article and Find Full Text PDF

The influenza C virus CM2 protein and a chimeric influenza A virus M2 protein (MCM) containing the CM2 transmembrane domain were assessed for their ability to functionally replace the M2 protein. While all three proteins could alter cytosolic pH to various degrees when expressed from cDNA, only M2 and MCM could at least partially restore infectious virus production to M2-deficient influenza A viruses. The data suggest that while the CM2 ion channel activity is similar to that of M2, sequences in the extracellular and/or cytoplasmic domains play important roles in infectious virus production.

View Article and Find Full Text PDF

Influenza A virus particles assemble and bud from plasma membrane domains enriched with the viral glycoproteins but only a small fraction of the total M2 protein is incorporated into virus particles when compared to the other viral glycoproteins. A membrane proximal cholesterol recognition/interaction amino acid consensus (CRAC) motif was previously identified in M2 and suggested to play a role in protein function. We investigated the importance of the CRAC motif on virus replication by generating recombinant proteins and viruses containing amino acid substitutions in this motif.

View Article and Find Full Text PDF

Influenza remains a serious public health threat throughout the world. Vaccines and antivirals are available that can provide protection from infection. However, new viral strains emerge continuously because of the plasticity of the influenza genome, which necessitates annual reformulation of vaccine antigens, and resistance to antivirals can appear rapidly and become entrenched in circulating virus populations.

View Article and Find Full Text PDF

The cytoplasmic tail of the influenza A virus M2 protein is required for the production of infectious virions. In this study, critical residues in the M2 cytoplasmic tail were identified by single-alanine scanning mutagenesis. The tyrosine residue at position 76, which is conserved in >99% of influenza virus strains sequenced to date, was identified as being critical for the formation of infectious virus particles using both reverse genetics and a protein trans-complementation assay.

View Article and Find Full Text PDF

Andes virus (ANDV), a member of the Hantavirus genus in the family Bunyaviridae, causes an acute disease characteristic of New-World hantaviruses called hantavirus pulmonary syndrome (HPS). HPS is a highly pathogenic disease with a case-fatality rate of 40%. ANDV is the only hantavirus reported to spread directly from human-to-human.

View Article and Find Full Text PDF

Crimean-Congo hemorrhagic fever virus (CCHFV), a member of the genus Nairovirus of the family Bunyaviridae, causes severe disease in humans with high rates of mortality. The virus has a tripartite genome composed of a small (S), a medium (M) and a large (L) RNA segment; the M segment encodes the two viral glycoproteins, G(N) and G(C). Whilst relatively few full-length M segment sequences are available, it is apparent that both G(N) and G(C) may exhibit significant sequence diversity.

View Article and Find Full Text PDF

Atomic models of myosin subfragment-1 (S1) and the actin filament are docked together using resonance energy-transfer data from both pre- and postpowerstroke conditions. The quality of the resulting best fits discriminated between neck-region orientations of the S1 for a given set of experimental conditions. For measurements of the postpowerstroke states in the presence of ADP, resonance energy-transfer data alone are sufficient to dock the atomic models and provide evidence that S1 exists with at least two neck-region orientations under these conditions.

View Article and Find Full Text PDF