Publications by authors named "Shaun Reining"

Optogenetic effectors and sensors provide a novel real-time window into complex physiological processes, enabling determination of molecular signaling processes within functioning cellular networks. However, the combination of these optical tools in mice is made practical by construction of genetic lines that are optically compatible and genetically tractable. We present a new toolbox of 21 mouse lines with lineage-specific expression of optogenetic effectors and sensors for direct biallelic combination, avoiding the multiallelic requirement of Cre recombinase -mediated DNA recombination, focusing on models relevant for cardiovascular biology.

View Article and Find Full Text PDF

Healthy brain function depends on the finely tuned spatial and temporal delivery of blood-borne nutrients to active neurons via the vast, dense capillary network. Here, using in vivo imaging in anesthetized mice, we reveal that brain capillary endothelial cells control blood flow through a hierarchy of IP receptor-mediated Ca events, ranging from small, subsecond protoevents, reflecting Ca release through a small number of channels, to high-amplitude, sustained (up to ~1 min) compound events mediated by large clusters of channels. These frequent (~5000 events/s per microliter of cortex) Ca signals are driven by neuronal activity, which engages G protein-coupled receptor signaling, and are enhanced by Ca entry through TRPV4 channels.

View Article and Find Full Text PDF

Ca oscillation is a system-level property of the cellular Ca-handling machinery and encodes diverse physiological and pathological signals. The present study tests the hypothesis that Ca oscillations play a vital role in maintaining the stemness of liver cancer stem cells (CSCs), which are postulated to be responsible for cancer initiation and progression. We found that niche factor-stimulated Ca oscillation is a signature feature of CSC-enriched Hep-12 cells and purified α2δ1 CSC fractions from hepatocellular carcinoma cell lines.

View Article and Find Full Text PDF

Histone proteins are elevated in the circulation after traumatic injury owing to cellular lysis and release from neutrophils. Elevated circulating histones in trauma contribute to coagulopathy and mortality through a mechanism suspected to involve endothelial cell (EC) dysfunction. However, the functional consequences of histone exposure on intact blood vessels are unknown.

View Article and Find Full Text PDF

Ventricular tachycardia (VT) is the most common and potentially lethal complication following myocardial infarction (MI). Biological correction of the conduction inhomogeneity that underlies re-entry could be a major advance in infarction therapy. As minimal increases in conduction of infarcted tissue markedly influence VT susceptibility, we reasoned that enhanced propagation of the electrical signal between non-excitable cells within a resolving infarct might comprise a simple means to decrease post-infarction arrhythmia risk.

View Article and Find Full Text PDF

Significant progress has been made in the last decade in the development of optogenetic effectors and sensors that can be deployed to understand complex biological signaling in mammals at a molecular level, without disrupting the distributed, lineage specific signaling circuits that comprise nuanced physiological responses. A major barrier to the widespread exploitation of these imaging tools, however, is the lack of readily available genetic reagents that can be easily combined to probe complex biological processes. Ideally, one could envision purpose-produced mouse lines expressing optically compatible sensors and effectors, sensor pairs in distinct lineages, or sensor pairs in discrete subcellular compartments, such that they could be crossed to enable in vivo imaging studies of unprecedented scientific power.

View Article and Find Full Text PDF

We examined the myogenic response to infarction in neonatal and adult mice to determine the role of c-kit(+) cardiovascular precursor cells (CPC) that are known to be present in early heart development. Infarction of postnatal day 1-3 c-kit(BAC)-EGFP mouse hearts induced the localized expansion of (c-kit)EGFP(+) cells within the infarct, expression of the c-kit and Nkx2.5 mRNA, myogenesis, and partial regeneration of the infarction, with (c-kit)EGFP(+) cells adopting myogenic and vascular fates.

View Article and Find Full Text PDF

Ventricular tachyarrhythmias are the main cause of sudden death in patients after myocardial infarction. Here we show that transplantation of embryonic cardiomyocytes (eCMs) in myocardial infarcts protects against the induction of ventricular tachycardia (VT) in mice. Engraftment of eCMs, but not skeletal myoblasts (SMs), bone marrow cells or cardiac myofibroblasts, markedly decreased the incidence of VT induced by in vivo pacing.

View Article and Find Full Text PDF