Publications by authors named "Shaun P Jackson"

Drugs are administered at a dosing schedule set by their therapeutic index, and termination of action is achieved by clearance and metabolism of the drug. In some cases, such as anticoagulant drugs or immunotherapeutics, it is important to be able to quickly reverse the drug's action. Here, we report a general strategy to achieve on-demand reversibility by designing a supramolecular drug (a noncovalent assembly of two cooperatively interacting drug fragments held together by transient hybridization of peptide nucleic acid (PNA)) that can be reversed with a PNA antidote that outcompetes the hybridization between the fragments.

View Article and Find Full Text PDF

A large variety of dietary phytochemicals has been shown to improve thrombosis and stroke outcomes in preclinical studies. Many of these compounds feature electrophilic functionalities that potentially undergo covalent addition to the sulfhydryl side chain of cysteine residues within proteins. However, the impact of such covalent modifications on the platelet activity and function remains unclear.

View Article and Find Full Text PDF

Glycoprotein Ibα (GPIbα) is expressed on the surface of platelets and megakaryocytes (MKs) and anchored to the membrane skeleton by filamin A (flnA). Although GPIb and flnA have fundamental roles in platelet biogenesis, the nature of this interaction in megakaryocyte biology remains ill-defined. We generated a mouse model expressing either human wild-type (WT) GPIbα (hGPIbαWT) or a flnA-binding mutant (hGPIbαFW) and lacking endogenous mouse GPIbα.

View Article and Find Full Text PDF

Extracellular protein disulfide isomerases (PDIs), including PDI, endoplasmic reticulum protein 57 (ERp57), ERp72, ERp46, and ERp5, are required for in vivo thrombus formation in mice. Platelets secrete PDIs upon activation, which regulate platelet aggregation. However, platelets secrete only ∼10% of their PDI content extracellularly.

View Article and Find Full Text PDF

Recanalization with restored cerebral perfusion is the primary goal of thrombolytic therapy in acute ischemic stroke. The identification of adjunctive therapies that can be safely used to enhance thrombolysis in stroke remains an elusive goal. We report here the development of a mouse in situ carotid artery thrombolysis (iCAT) stroke model involving graded cerebral ischemia to induce unihemispheric infarction after thrombotic occlusion of the common carotid artery (CCA).

View Article and Find Full Text PDF
Article Synopsis
  • Microvascular thrombosis and inflammation (thromboinflammation) are serious issues for critically ill patients, as they lead to high mortality rates and limited treatment options.
  • The research introduces a new microfluidic post model that simulates 3D interactions between neutrophils and platelets, providing a better understanding of their behavior in a flow environment compared to traditional 2D methods.
  • The study findings indicate that the geometry of the posts significantly affects neutrophil recruitment and adhesion, suggesting that 3D platelet formations play a crucial role in enhancing inflammatory responses in microvascular conditions.
View Article and Find Full Text PDF

Blood feeding arthropods, such as leeches, ticks, flies and mosquitoes, provide a privileged source of peptidic anticoagulant molecules. These primarily operate through inhibition of the central coagulation protease thrombin by binding to the active site and either exosite I or exosite II. Herein, we describe the rational design of a novel class of trivalent thrombin inhibitors that simultaneously block both exosites as well as the active site.

View Article and Find Full Text PDF

T lymphocytes utilize amoeboid migration to navigate effectively within complex microenvironments. The precise rearrangement of the actin cytoskeleton required for cellular forward propulsion is mediated by actin regulators, including the actin-related protein 2/3 (Arp2/3) complex, a macromolecular machine that nucleates branched actin filaments at the leading edge. The consequences of modulating Arp2/3 activity on the biophysical properties of the actomyosin cortex and downstream T cell function are incompletely understood.

View Article and Find Full Text PDF

Hematophagous organisms produce a suite of salivary proteins which interact with the host's coagulation machinery to facilitate the acquisition and digestion of a bloodmeal. Many of these biomolecules inhibit the central blood-clotting serine proteinase thrombin that is also the target of several clinically approved anticoagulants. Here a bioinformatics approach is used to identify seven tick proteins with putative thrombin inhibitory activity that we predict to be posttranslationally sulfated at two conserved tyrosine residues.

View Article and Find Full Text PDF

Integrins are membrane receptors that mediate cell adhesion and mechanosensing. The structure-function relationship of integrins remains incompletely understood, despite the extensive studies carried out because of its importance to basic cell biology and translational medicine. Using a fluorescence dual biomembrane force probe, microfluidics and cone-and-plate rheometry, we applied precisely controlled mechanical stimulations to platelets and identified an intermediate state of integrin αβ that is characterized by an ectodomain conformation, ligand affinity and bond lifetimes that are all intermediate between the well-known inactive and active states.

View Article and Find Full Text PDF

Thrombosis with associated inflammation (thromboinflammation) occurs commonly in a broad range of human disorders. It is well recognized clinically in the context of superficial thrombophlebitis (thrombosis and inflammation of superficial veins); however, it is more dangerous when it develops in the microvasculature of injured tissues and organs. Microvascular thrombosis with associated inflammation is well recognized in the context of sepsis and ischemia-reperfusion injury; however, it also occurs in organ transplant rejection, major trauma, severe burns, the antiphospholipid syndrome, preeclampsia, sickle cell disease, and biomaterial-induced thromboinflammation.

View Article and Find Full Text PDF

Platelet αIIbβ3 integrin and its ligands are essential for thrombosis and hemostasis, and play key roles in myocardial infarction and stroke. Here we show that apolipoprotein A-IV (apoA-IV) can be isolated from human blood plasma using platelet β3 integrin-coated beads. Binding of apoA-IV to platelets requires activation of αIIbβ3 integrin, and the direct apoA-IV-αIIbβ3 interaction can be detected using a single-molecule Biomembrane Force Probe.

View Article and Find Full Text PDF

Multiphoton fluorescence microscopy (MPM), using near infrared excitation light, provides increased penetration depth, decreased detection background, and reduced phototoxicity. Using stimulated emission depletion (STED) approach, MPM can bypass the diffraction limitation, but it requires both spatial alignment and temporal synchronization of high power (femtosecond) lasers, which is limited by the inefficiency of the probes. Here, we report that upconversion nanoparticles (UCNPs) can unlock a new mode of near-infrared emission saturation (NIRES) nanoscopy for deep tissue super-resolution imaging with excitation intensity several orders of magnitude lower than that required by conventional MPM dyes.

View Article and Find Full Text PDF

The circulating life span of blood platelets is regulated by the prosurvival protein BCL-X It restrains the activity of BAK and BAX, the essential prodeath mediators of intrinsic apoptosis. Disabling the platelet intrinsic apoptotic pathway in mice by deleting BAK and BAX results in a doubling of platelet life span and concomitant thrombocytosis. Apoptotic platelets expose phosphatidylserine (PS) via a mechanism that is distinct from that driven by classical agonists.

View Article and Find Full Text PDF

Diabetes is associated with an exaggerated platelet thrombotic response at sites of vascular injury. Biomechanical forces regulate platelet activation, although the impact of diabetes on this process remains ill-defined. Using a biomembrane force probe (BFP), we demonstrate that compressive force activates integrin αβ on discoid diabetic platelets, increasing its association rate with immobilized fibrinogen.

View Article and Find Full Text PDF

Ischemia-reperfusion (IR) injury is a common complication of a variety of cardiovascular diseases, including ischemic stroke and myocardial infarction (MI). While timely re-establishment of blood flow in a thrombosed artery is the primary goal of acute therapy in these diseases, paradoxically, reperfusion of ischemic tissue can cause widespread microvascular dysfunction that significantly exacerbates organ damage. Reperfusion injury is associated with activation of the humoral and cellular components of the hemostatic and innate immune systems and also with excessive reactive oxygen species production, endothelial dysfunction, thrombosis, and inflammation.

View Article and Find Full Text PDF

Conventional approaches for studying receptor-mediated cell signaling, such as the western blot and flow cytometry, are limited in three aspects: 1) The perturbing preparation procedures often alter the molecules from their native state on the cell; 2) Long processing time before the final readout makes it difficult to capture transient signaling events (<1 min); 3) The experimental environments are force-free, therefore unable to visualize mechanical signals in real time. In contrast to these methods in biochemistry and cell biology that are usually population-averaged and non-real-time, here we introduce a novel single-cell based nanotool termed dual biomembrane force probe (dBFP). The dBFP provides precise controls and quantitative readouts in both mechanical and chemical terms, which is particularly suited for juxtacrine signaling and mechanosensing studies.

View Article and Find Full Text PDF

Clot retraction refers to the process whereby activated platelets transduce contractile forces onto the fibrin network of a thrombus, which over time increases clot density and decreases clot size. This process is considered important for promoting clot stability and maintaining blood vessel patency. Insights into the mechanisms regulating clot retraction at sites of vascular injury have been hampered by a paucity of in vivo experimental models.

View Article and Find Full Text PDF

Gut ischemia is common in critically ill patients, promoting thrombosis and inflammation in distant organs. The mechanisms linking hemodynamic changes in the gut to remote organ thrombosis remain ill-defined. We demonstrate that gut ischemia in the mouse induces a distinct pulmonary thrombotic disorder triggered by neutrophil macroaggregates.

View Article and Find Full Text PDF

Von Willebrand's disease (VWD) is the most common inherited bleeding disorder caused by either quantitative or qualitative defects of von Willebrand factor (VWF). Current tests for VWD require relatively large blood volumes, have low throughput, are time-consuming, and do not incorporate the physiologically relevant effects of haemodynamic forces. We developed a microfluidic device incorporating micro-contractions that harnesses well-defined haemodynamic strain gradients to initiate platelet aggregation in citrated whole blood.

View Article and Find Full Text PDF

The 14-3-3 family of adaptor proteins regulate diverse cellular functions including cell proliferation, metabolism, adhesion and apoptosis. Platelets express numerous 14-3-3 isoforms, including 14-3-3ζ, which has previously been implicated in regulating GPIbα function. Here we show an important role for 14-3-3ζ in regulating arterial thrombosis.

View Article and Find Full Text PDF

A series of amino-substituted triazines were developed and examined for PI3Kβ inhibition and anti-platelet function. Structural adaptations of a morpholine ring of the prototype pan-PI3K inhibitor ZSTK474 yielded PI3Kβ selective compounds, where the selectivity largely derives from an interaction with the non-conserved Asp862 residue, as shown by site directed mutagenesis. The most PI3Kβ selective inhibitor from the series was studied in detail through a series of in vitro and in vivo functional studies.

View Article and Find Full Text PDF

The Open Field (OF) test is one of the most commonly used assays for assessing exploratory behaviour and generalised locomotor activity in rodents. Nevertheless, the vast majority of researchers still rely upon costly commercial systems for recording and analysing OF test results. Consequently, our aim was to design a freely available program for analysing the OF test and to provide an accompanying protocol that was minimally invasive, rapid, unbiased, without the need for specialised equipment or training.

View Article and Find Full Text PDF