Publications by authors named "Shaun Forgie"

A diversity of macro- and microparasitic species exert strong influences on wildlife population density, community structure, and ecosystem functioning, all through their impacts on individual host fitness. Through consuming, manipulating, and relocating wildlife feces, over 7,000 species of coprophagous dung beetles interact with a staggering diversity of wildlife parasites with fecal-oral transmission in ways that both increase and decrease transmission. Here, we review the mechanisms by which dung beetles influence micro- and macroparasite transmission and outline a future research framework that integrates theory and empirical insights to advance our understanding of how these relationships may interact with ongoing environmental change drivers to further influence wildlife populations and community structure.

View Article and Find Full Text PDF

Microscopic localization of endosymbiotic bacteria in three species of mealybug (Pseudococcus longispinus, the long-tailed mealybug; Pseudococcus calceolariae, the citrophilus mealybug; and Pseudococcus viburni, the obscure mealybug) showed these organisms were confined to bacteriocyte cells within a bacteriome centrally located within the hemocoel. Two species of bacteria were present, with the secondary endosymbiont, in all cases, living within the primary endosymbiont. DNA from the dissected bacteriomes of all three species of mealybug was extracted for analysis.

View Article and Find Full Text PDF

The Scarabaeini is an old world tribe of ball-rolling dung beetles that have origins dating back to at least the mid-upper Miocene (19-8 million years ago). The tribe has received little to no attention in morphological or molecular phylogenetics. We obtained sequence data from the mitochondrial cytochrome oxidase subunit I (1,197 bp) and 16S ribosomal RNA (461 bp) genes for 25 species of the Scarabaeini in an attempt to further resolve broad phylogenetic relationships within this tribe.

View Article and Find Full Text PDF

Volcanic islands with well-characterized geological histories can provide ideal templates for generating and testing phylogeographic predictions. Many studies have sought to utilize these to investigate patterns of colonization and speciation within groups of closely related species across a number of islands. Here we focus attention within a single volcanic island with a well-characterized geological history to develop and test phylogeographic predictions.

View Article and Find Full Text PDF