Histone deacetylase (HDAC) enzymes 1-3 exist in several corepressor complexes and are viable drug targets. To date, proteolysis targeting chimeras (PROTACs) designed to target HDAC1-3 typically exhibit the selective degradation of HDAC3. Herein, we report cereblon-recruiting PROTACs that degrade HDAC1 with selectivity over HDAC3.
View Article and Find Full Text PDFHistone deacetylases 1-3 (HDAC1, HDAC2, and HDAC3) and their associated corepressor complexes play important roles in regulating chromatin structure and gene transcription. HDAC enzymes are also validated drug targets for oncology and offer promise toward new drugs for neurodegenerative diseases and cardiovascular diseases. We synthesized four novel heterobifunctional molecules designed to recruit the mouse double minute 2 homologue (MDM2) E3 ligase to degrade HDAC1-3 utilizing the MDM2 inhibitor idasanutlin, known as proteolysis targeting chimeras (PROTACs).
View Article and Find Full Text PDFThe accumulation of senescent cells has an important role in the phenotypical changes observed in ageing and in many age-related pathologies. Thus, the strategies designed to prevent these effects, collectively known as senotherapies, have a strong clinical potential. Senolytics are a type of senotherapy aimed at specifically eliminating senescent cells from tissues.
View Article and Find Full Text PDFClick chemistry was utilised to prepare a library of PROTACs based on entinostat a class I histone deacetylase (HDAC) inhibitor in clinical trials. A novel PROTAC JMC-137 was identified as a HDAC1/2 and HDAC3 degrader in HCT116 cells. However, potency was compromised compared to previously identified class I HDAC PROTACs highlighting the importance in the choice of HDAC ligand, functional group for linker attachment and positioning in PROTAC design.
View Article and Find Full Text PDFThe class I histone deacetylase (HDAC) enzymes;HDAC1,2 and 3 form the catalytic engine of at least seven structurally distinct multiprotein complexes in cells. These molecular machines play a vital role in the regulation of chromatin accessibility and gene activity via the removal of acetyl moieties from lysine residues within histone tails. Their inhibition via small molecule inhibitors has beneficial effects in a number of disease types, including the clinical treatment of hematological cancers.
View Article and Find Full Text PDFClass I histone deacetylase (HDAC) enzymes 1, 2, and 3 organize chromatin as the catalytic subunits within seven distinct multiprotein corepressor complexes and are established drug targets. We report optimization studies of benzamide-based Von Hippel-Lindau (VHL) E3-ligase proteolysis targeting chimeras (PROTACs) and for the first time describe transcriptome perturbations resulting from these degraders. By modifying the linker and VHL ligand, we identified PROTACs , , and with submicromolar DC values for HDAC1 and/or HDAC3 in HCT116 cells.
View Article and Find Full Text PDFLysine specific demethylase 1 (LSD1) regulates gene expression as part of the CoREST complex, along with co-repressor of REST (CoREST) and histone deacetylase 1 (HDAC1). CoREST is recruited to specific genomic loci by core components and numerous transient interactions with chromatin-associated factors and transcription factors. We hypothesise that many of these weaker and transient associations may be difficult to identify using traditional co-immunoprecipitation methods.
View Article and Find Full Text PDFHistone deacetylase (HDAC) enzymes play crucial roles in epigenetic gene expression and are an attractive therapeutic target. Five HDAC inhibitors have been approved for cancer treatment to date, however, clinical applications have been limited due to poor single-agent drug efficacy and side effects associated with a lack of HDAC isoform or complex selectivity. An emerging strategy aiming to address these limitations is the development of bifunctional HDAC therapeutics-single molecules comprising a HDAC inhibitor conjugated to another specificity targeting moiety.
View Article and Find Full Text PDFWe have identified a proteolysis targeting chimera (PROTAC) of class I HDACs 1, 2 and 3. The most active degrader consists of a benzamide HDAC inhibitor, an alkyl linker, and the von Hippel-Lindau E3 ligand. Our PROTAC increased histone acetylation levels and compromised colon cancer HCT116 cell viability, establishing a degradation strategy as an alternative to class I HDAC inhibition.
View Article and Find Full Text PDFPackaging the long and fragile genomes of eukaryotic species into nucleosomes is all well and good, but how do cells gain access to the DNA again after it has been bundled away? The solution, in every species from yeast to man, is to post-translationally modify histones, altering their chemical properties to either relax the chromatin, label it for remodelling or make it more compact still. Histones are subject to a myriad of modifications: acetylation, methylation, phosphorylation, ubiquitination etc. This review focuses on histone acylations, a diverse group of modifications which occur on the ε-amino group of Lysine residues and includes the well-characterised Lysine acetylation.
View Article and Find Full Text PDFAt face value, the Sin3 histone deacetylase (HDAC) complex appears to be a prototypical co-repressor complex, that is, a multi-protein complex recruited to chromatin by DNA bound repressor proteins to facilitate local histone deacetylation and transcriptional repression. While this is almost certainly part of its role, Sin3 stubbornly refuses to be pigeon-holed in quite this way. Genome-wide mapping studies have found that Sin3 localises predominantly to the promoters of actively transcribed genes.
View Article and Find Full Text PDFThe Sin3A complex acts as a transcriptional hub, integrating the function of diverse transcription factors with histone modifying enzymes, notably, histone deacetylases (HDAC) 1 and 2. The Sin3A protein sits at the centre of the complex, mediating multiple simultaneous protein-protein interactions via its four paired-amphipathic helix (PAH) domains (PAH1-4). The PAH domains contain a conserved four helical bundle, generating a hydrophobic cleft into which the single-helix of a Sin3-interaction domain (SID) is able to insert and bind with high affinity.
View Article and Find Full Text PDFIn this Letter, the western blot for LSD1 in the right panel of Fig. 2b ('TCP +') was inadvertently duplicated from the tubulin blot immediately below. The actual tubulin western blot shows the same result, with no significant change to the levels of tubulin (see Fig.
View Article and Find Full Text PDFThe first hematopoietic stem and progenitor cells are generated during development from hemogenic endothelium (HE) through trans-differentiation. The molecular mechanisms underlying this endothelial-to-hematopoietic transition (EHT) remain poorly understood. Here, we explored the role of the epigenetic regulators HDAC1 and HDAC2 in the emergence of these first blood cells in vitro and in vivo.
View Article and Find Full Text PDFCell type specification relies on the capacity of undifferentiated cells to properly respond to specific differentiation-inducing signals. Using genomic approaches along with loss- and gain-of-function genetic models, we identified OCT4-dependent mechanisms that provide embryonic stem cells with the means to customize their response to external cues. OCT4 binds a large set of low-accessible genomic regions.
View Article and Find Full Text PDFHistone deacetylases (HDACs) 1, 2 and 3 form the catalytic subunit of several large transcriptional repression complexes. Unexpectedly, the enzymatic activity of HDACs in these complexes has been shown to be regulated by inositol phosphates, which bind in a pocket sandwiched between the HDAC and co-repressor proteins. However, the actual mechanism of activation remains poorly understood.
View Article and Find Full Text PDFIn vertebrates, the first haematopoietic stem cells (HSCs) with multi-lineage and long-term repopulating potential arise in the AGM (aorta-gonad-mesonephros) region. These HSCs are generated from a rare and transient subset of endothelial cells, called haemogenic endothelium (HE), through an endothelial-to-haematopoietic transition (EHT). Here, we establish the absolute requirement of the transcriptional repressors GFI1 and GFI1B (growth factor independence 1 and 1B) in this unique trans-differentiation process.
View Article and Find Full Text PDFRecombineering is an in vivo genetic engineering technique involving homologous recombination mediated by phage recombination proteins. The use of recombineering methodology is not limited by size and sequence constraints and therefore has enabled the streamlined construction of bacterial strains and multi-component plasmids. Recombineering applications commonly utilize singleplex strategies and the parameters are extensively tested.
View Article and Find Full Text PDFThe lambda phage Red recombination system can mediate efficient homologous recombination in Escherichia coli, which is the basis of the DNA engineering technique termed recombineering. Red mediated insertion of DNA requires DNA replication, involves a single-stranded DNA intermediate and is more efficient on the lagging strand of the replication fork. Lagging strand recombination has also been postulated to explain the Red mediated repair of gapped plasmids by an Okazaki fragment gap filling model.
View Article and Find Full Text PDFGene targeting refers to the precise modification of a genetic locus using homologous recombination. The generation of novel cell lines and transgenic mouse models using this method necessitates the construction of a 'targeting' vector, which contains homologous DNA sequences to the target gene, and has for many years been a limiting step in the process. Vector construction can be performed in vivo in Escherichia coli cells using homologous recombination mediated by phage recombinases using a technique termed recombineering.
View Article and Find Full Text PDFThe expression and purification of large amounts of recombinant protein complexes is an essential requirement for structural biology studies. For over two decades, prokaryotic expression systems such as E. coli have dominated the scientific literature over costly and less efficient eukaryotic cell lines.
View Article and Find Full Text PDFHistone deacetylases 1 and 2 (HDAC1/2) form the core catalytic components of corepressor complexes that modulate gene expression. In most cell types, deletion of both Hdac1 and Hdac2 is required to generate a discernible phenotype, suggesting their activity is largely redundant. We have therefore generated an ES cell line in which Hdac1 and Hdac2 can be inactivated simultaneously.
View Article and Find Full Text PDF