Mammalian cells consume large amount of nutrients during growth and production. However, endogenous metabolic inefficiencies often prevent cells to fully utilize nutrients to support growth and protein production. Instead, significant fraction of fed nutrients is diverted into extracellular accumulation of waste by-products and metabolites, further inhibiting proliferation and protein synthesis.
View Article and Find Full Text PDFContinuous manufacturing of oral-dosage drug products is increasing the need for rigorous process understanding both from a process design and control perspective. The purpose of this study is to develop a methodology that analyzes the effects of upstream process parameters on continuous tablet compaction and then correlates associated upstream variables to the final tablet attributes (e.g.
View Article and Find Full Text PDFA tablet film coating and drying process was assessed by an experimentally validated thermodynamic balance model. Mass conservation equations were derived for the process air and the aqueous coating solution. Thermodynamic behavior of the solution was described by evaporation at the tablet surface and penetration into the tablet.
View Article and Find Full Text PDFIn this study, a novel three-compartmental population balance model (PBM) for a continuous twin screw wet granulation process is developed, combining the techniques of PBM and regression process modeling. The developed model links screw configuration, screw speed, and blend throughput with granule properties to predict the granule size distribution (GSD) and volume-average granule diameter. The granulator screw barrel was divided into three compartments along barrel length: wetting compartment, mixing compartment, and steady growth compartment.
View Article and Find Full Text PDFContinuous manufacturing techniques are increasingly being adopted in the pharmaceutical industry and powder blending is a key operation for solid-dosage tablets. A modeling methodology involving axial and radial tanks-in-series flowsheet models is developed to describe the residence time distribution (RTD) and blend uniformity of a commercial powder blending system. Process data for a six-component formulation processed in a continuous direct compression line (GEA Pharma Systems) is used to test the methodology.
View Article and Find Full Text PDF