Publications by authors named "Shaun Abrams"

The ability of the pluripotent epiblast to contribute progeny to all three germ layers is thought to be lost after gastrulation. The later-forming neural crest (NC) rises from ectoderm and it remains poorly understood how its exceptionally high stem-cell potential to generate mesodermal- and endodermal-like derivatives is obtained. Here, we monitor transcriptional changes from gastrulation to neurulation using single-cell-Multiplex-Spatial-Transcriptomics (scMST) complemented with RNA-sequencing.

View Article and Find Full Text PDF

The molecular mechanisms that coordinate patterning of the embryonic ectoderm into spatially distinct lineages to form the nervous system, epidermis, and neural crest-derived craniofacial structures are unclear. Here, biochemical disease-variant profiling reveals a posttranslational pathway that drives early ectodermal differentiation in the vertebrate head. The anteriorly expressed ubiquitin ligase CRL3-KLHL4 restricts signaling of the ubiquitous cytoskeletal regulator CDC42.

View Article and Find Full Text PDF

The ability of the pluripotent epiblast to contribute progeny to all three germ layers is thought to be lost after gastrulation. The later-forming neural crest (NC) rises from ectoderm and it remains poorly understood how its exceptionally high stem-cell potential to generate mesodermal- and endodermal-like cells is obtained. We monitored transcriptional changes from gastrulation to neurulation using single-cell-Multiplex-Spatial-Transcriptomics (scMST) complemented with RNA-sequencing.

View Article and Find Full Text PDF

Centrioles comprise the heart of centrosomes, microtubule-organizing centers. To study the function of centrioles in lung and gut development, we genetically disrupted centrioles throughout the mouse endoderm. Surprisingly, removing centrioles from the endoderm did not disrupt intestinal growth or development but blocked lung branching.

View Article and Find Full Text PDF

Craniofacial defects are among the most common phenotypes caused by ciliopathies, yet the developmental and molecular etiology of these defects is poorly understood. We investigated multiple mouse models of human ciliopathies (including and mutants) and discovered that each displays hypotelorism, a narrowing of the midface. As early in development as the end of gastrulation, mutants displayed reduced activation of the Hedgehog (HH) pathway in the prechordal plate, the head organizer.

View Article and Find Full Text PDF

During the development of the cerebral cortex, neurons are generated directly from radial glial cells or indirectly via basal progenitors. The balance between these division modes determines the number and types of neurons formed in the cortex thereby affecting cortical functioning. Here, we investigate the role of primary cilia in controlling the decision between forming neurons directly or indirectly.

View Article and Find Full Text PDF

Organ formation and regeneration require epithelial progenitor expansion to engineer, maintain, and repair the branched tissue architecture. Identifying the mechanisms that control progenitor expansion will inform therapeutic organ (re)generation. Here, we discover that combined KIT and fibroblast growth factor receptor 2b (FGFR2b) signaling specifically increases distal progenitor expansion during salivary gland organogenesis.

View Article and Find Full Text PDF

Parasympathetic nerves are a vital component of the progenitor cell niche during development, maintaining a pool of progenitors for organogenesis. Injured adult organs do not regenerate after parasympathectomy, and there are few treatments to improve organ regeneration, particularly after damage by therapeutic irradiation. Here we show that restoring parasympathetic function with the neurotrophic factor neurturin increases epithelial organ regeneration after damage.

View Article and Find Full Text PDF

Enzymes of the AID/APOBEC family, characterized by the targeted deamination of cytosine to generate uracil within DNA, mediate numerous critical immune responses. One family member, activation-induced cytidine deaminase (AID), selectively introduces uracil into antibody variable and switch regions, promoting antibody diversity through somatic hypermutation or class switching. Other family members, including APOBEC3F and APOBEC3G, play an important role in retroviral defense by acting on viral reverse transcripts.

View Article and Find Full Text PDF