Publications by authors named "Shaul Burd"

MicroRNAs (miRNAs) are small RNAs that regulate the expression of target genes post-transcriptionally; they are known to play major roles in development and responses to abiotic stress. miR408 is a highly conserved miRNA in plants that responds to the availability of copper and targets genes encoding copper-containing proteins. It was recently recognized to be an important component of the HY5-SPL7 gene network that mediates a coordinated response to light and copper, illustrating its central role in the response of plants to the environment.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are a class of small RNAs, which typically function by guiding cleavage of target mRNAs. They are known to play roles in a variety of plant processes including development, responses to environmental stresses and senescence. To identify senescence regulation of miRNAs in Arabidopsis thaliana, eight small RNA libraries were constructed and sequenced at four different stages of development and senescence from both leaves and siliques, resulting in more than 200 million genome-matched sequences.

View Article and Find Full Text PDF

Abscission occurs specifically in the abscission zone (AZ) tissue as a natural stage of plant development. Previously, we observed delay of tomato (Solanum lycopersicum) leaf abscission when the LX ribonuclease (LX) was inhibited. The known association between LX expression and programmed cell death (PCD) suggested involvement of PCD in abscission.

View Article and Find Full Text PDF

Plant senescence- or PCD-associated nucleases share significant homology with nucleases from different organisms. However, knowledge of their function is limited. Intracellular localization of the Arabidopsis senescence- and PCD-associated nuclease BFN1 was investigated.

View Article and Find Full Text PDF

The current abscission model suggests the formation of a post-abscission trans-differentiation of a protective layer as the last step of the process. The present report expands the repertoire of genes activated in the tomato flower abscission zone (AZ), which are likely to be involved in defense responses. We identified four different defense-related genes, including: Cysteine-type endopeptidase, α-Dioxygenase 1 (α-DOX1), HopW-1-1-Interacting protein2 (WIN2), and Stomatal-derived factor-2 (SDF2), that are newly-associated with the late stage of the abscission process.

View Article and Find Full Text PDF

The abscission process is initiated by changes in the auxin gradient across the abscission zone (AZ) and is triggered by ethylene. Although changes in gene expression have been correlated with the ethylene-mediated execution of abscission, there is almost no information on the molecular and biochemical basis of the increased AZ sensitivity to ethylene. We examined transcriptome changes in the tomato (Solanum lycopersicum 'Shiran 1335') flower AZ during the rapid acquisition of ethylene sensitivity following flower removal, which depletes the AZ from auxin, with or without preexposure to 1-methylcyclopropene or application of indole-3-acetic acid after flower removal.

View Article and Find Full Text PDF

Little is known about the biological role of nucleases induced during plant senescence and programmed cell death (PCD). Arabidopsis BFN1 has been identified as a senescence-associated type I nuclease, whose protein sequence shares high homology with some other senescence- or PCD-associated plant nucleases. To learn about BFN1 regulation, its expression pattern was analysed.

View Article and Find Full Text PDF

Although present in different organisms and conserved in their protein sequence, the biological functions of T2 ribonucleases (RNase) are generally unknown. Tomato (Lycopersicon esculentum) LX is a T2/S-like RNase and its expression is known to be associated with phosphate starvation, ethylene responses, and senescence and programmed cell death. In this study, LX function was investigated using antisense tomato plants in which the LX protein level was reduced.

View Article and Find Full Text PDF

Induction of nuclease and RNase activities, together with decreases in nucleic acid content are considered to be characteristics of senescence in higher plants. However, little is known about the specific identities or functions of the enzymes involved or the mechanisms controlling their activation. Here we report the identification of a 41-kDa-tomato nuclease, LeNUC1, which is specifically induced during tomato leaf senescence but not in ripening fruits.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiontakoqfimnl877sipbiefq37d3uit5db3): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once