Publications by authors named "Shatarupa Basak"

Over decades, nanozyme has served as a better replacement of bioenzymes and fulfills most of the shortcomings and intrinsic disadvantages of bioenzymes. Recently, manganese-based nanomaterials have been highly noticed for redox-modulated multienzyme mimicking activity and wide applications in biosensing and biomedical science. The redox-modulated multienzyme mimicking activity was highly in tune with their size, surface functionalization, and charge on the surface and phases.

View Article and Find Full Text PDF

Having powerful antibacterial and antioxidant effects, zinc oxide and manganese oxide nanomaterials are of great interest. Here we have synthesized manganese oxide decorated zinc oxide (MZO) nanocomposites by co-precipitation method, calcined at different temperatures (300-750 °C) and studied various properties. Here the crystalline structure of the nanocomposite and phase change of the manganese oxide are observed with calcination temperature.

View Article and Find Full Text PDF

A biosensor comprising crystalline CuS nanoparticles (NPs) was synthesized via a one-step simple coprecipitation route without involvement of a surfactant. The powder X-ray diffraction method has been used to evaluate the crystalline nature and different phases consist of the formation of CuS NPs. Mainly hexagonal unit cells consist of the formation of CuS NP unit cells.

View Article and Find Full Text PDF

Herein, in order to improve the bioavailability of a non-biodegradable pollutant, inclusion complexation procedures had been used to develop better formulations of this pollutant, Bisphenol A (BPA). In our research, an inclusion complex (IC) of β-cyclodextrin (β-CD) with BPA was formed to investigate the effect of β-CD on the water solubility, anti-oxidant, anti-bacterial activity, toxicity, and thermal stability of BPA. UV-Vis and other spectrometric methods such as NMR, FTIR, and XRD indicated the molecular mechanism of interactions between β-CD and BPA, which was further hypothesized using molecular modeling to confirm preliminary results.

View Article and Find Full Text PDF

In recent decades, studies have focused on inorganic nanozymes to overcome the intrinsic drawbacks of bioenzymes due to the demands of improving the reaction conditions and lack of robustness to harsh environmental factors. Many biochemical reactions catalyzed by enzymes require light activation. Light-activated nanozymes have distinct advantages, including being regulated by light stimuli, activating the molecular oxygen to produce reactive oxygen species (ROS) without interfering supplementary oxidants, and often showing a synergistic effect to catalyze some challenging reactions.

View Article and Find Full Text PDF

The co-evaporation approach was used to examine the host-guest interaction and to explore the cytotoxic and antibacterial properties of an important anti-cancer medication, 6-mercaptopurine monohydrate (6-MP) with β-cyclodextrin (β-CD). The UV-Vis investigation confirmed the inclusion complex's (IC) 1 : 1 stoichiometry and was also utilized to oversee the viability of this inclusion process. FTIR, NMR, and XRD, among other spectrometric techniques, revealed the mechanism of molecular interactions between β-CD and 6-MP which was further hypothesized by DFT to verify tentative outcomes.

View Article and Find Full Text PDF

The assembly of an inclusion complex in an aqueous medium using a metabolizer drug (dyphylline) as guest and β-cyclodextrin as host has been established, which is extremely appropriate for a variety of applications in modern biomedical sciences. The formation of the inclusion complex is established by H NMR, and surface tension and conductivity measurements demonstrate that the inclusion complex was produced with 1:1 stoichiometry. The thermodynamic parameters based on density, viscosity, and refractive index measurements were used to determine the nature of the complex.

View Article and Find Full Text PDF

The myth of inactivity of inorganic materials in a biological system breaks down by the discovery of nanozymes. From this time, the nanozyme has attracted huge attention for its high durability, cost-effective production, and easy storage over the natural enzyme. Moreover, the multienzyme-mimicking activity of nanozymes can regulate the level of reactive oxygen species (ROS) in an intercellular system.

View Article and Find Full Text PDF