ACS Chem Neurosci
August 2024
Biochim Biophys Acta Mol Basis Dis
October 2024
Glioblastoma is a malignant brain tumor with poor prognosis. Though several dysregulated pathways were found to mediate the tumor progression, hyperactivation of RAS-RAF-ERK pathway, enhanced glycolysis and SKP2 are associated with several glioblastomas. Recent findings on the role of USP10 in the transition from pro-neural to mesenchymal subtype of glioblastoma and, USP13 in the stabilization of RAF1 in mouse embryonic stem cells prompted us to examine their role in the mechanisms mediating the progression of glioblastoma.
View Article and Find Full Text PDFUpregulation and aggregation of the pre-synaptic protein, α-synuclein plays a key role in Parkinson's disease (PD) and mitochondrial dysfunction was surmised to be an upstream event in the disease pathogenesis. Emerging reports identified the role of nitazoxanide (NTZ), an anti-helminth drug, in enhancing mitochondrial oxygen consumption rate (OCR) and autophagy. In the present study, we have examined the mitochondrial effects of NTZ in mediating cellular autophagy and subsequent clearance of both endogenous and pre-formed aggregates of α-synuclein in cellular model of PD.
View Article and Find Full Text PDFBiochim Biophys Acta Gene Regul Mech
May 2022
α-Synuclein (α-syn) plays a precipitating role in Parkinson's disease (PD) due to its tendency to form oligomers and fibrils. The presence of smaller isoforms of α-syn was widely noticed in the affected brain regions of PD patients. 112-synuclein (112-syn) which lacks exon-5, possess enhanced aggregation propensity and forms intracellular inclusions.
View Article and Find Full Text PDFThe sequential cleavage of full-length amyloid precursor protein (APP) by secretases has been at the center of efforts for understanding the onset of Alzheimer's disease (AD). A decrease in α-secretase activity was observed during the progression of AD; however, the precise molecular mechanism involved in the downregulation of α-secretase under oxidative stress is not fully understood. In the present study, we have demonstrated that pharmacological inhibition of mitogen-activated protein kinase/extracellular-signal-regulated kinase (MAPK/ERK) by mitogen-activated protein kinase kinase-1 (MEK-1) inhibitor (PD98059) restored the expression of a disintegrin and metalloproteinase 10 (ADAM10) with a concomitant decrease in β-site APP cleavage enzyme 1 (BACE1) under oxidative stress.
View Article and Find Full Text PDFBiochim Biophys Acta Bioenerg
March 2020
Parkinson's disease (PD) is a chronic neurodegenerative disease characterized by the death of dopamine neurons of Substantia nigra pars compacta (SNpc) leading to motor deficits. Amongst the mechanisms proposed, mitochondrial dysfunction, reduced complex-I and PGC1α levels were found to correlate with the pathology of PD. As embelin is a natural product with structural resemblance to ubiquinone, exhibits mitochondrial uncoupling and antioxidant effects, in the present study, we sought to examine its role in the mechanisms mediating PD.
View Article and Find Full Text PDFParkinson's disease (PD) is a progressive neurodegenerative disorder associated with the degeneration of dopamine neurons of the substantia nigra pars compacta (SNpc) and the presence of intra-neuronal aggregates of α-synuclein and its post-translational products. Based on emerging reports on the association between glycated α-synuclein and PD; and the newly identified deglycase activity of DJ-1, we sought to find the relevance of deglycase activity of DJ-1 on glycation of α-synuclein and its plausible role in PD. Our results demonstrate that DJ-1 has a higher affinity towards the substrate methylglyoxal (MGO) (Km = 900 mM) as compared to its familial mutant, L166P (Km = 1900 mM).
View Article and Find Full Text PDFACS Chem Neurosci
December 2018
The presynaptic protein, α-synuclein (α-syn), has been shown to play a crucial role in multiple neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), and dementia with Lewy bodies (DLB). The three major domains of α-syn protein were shown to govern its membrane interaction, protein fibrillation, and chaperone activity. So far, four different alternatively spliced isoforms of α-syn, which lack either exon 3 (syn-126) or exon 5 (syn-112) or both (syn-98) resulting in altered function of the proteins, have been identified.
View Article and Find Full Text PDFAmongst various therapeutic properties of the natural product embelin, its anti-cancer effects are being extensively studied. We observed that, embelin induced apoptosis in A549 cells lacking functional mitochondria (ρ0 cells) indicating that its mitochondrial effects are not primarily responsible for its anti-cancer activity. However, p38 mediated activation of p53 was found to play a pivotal role in governing the apoptotic activity of embelin due to the following observations: a time-dependent activation of p53 and apoptosis by embelin; selective inhibition of p38 inhibited embelin-induced p53 levels.
View Article and Find Full Text PDFSeries of 4H-chromone-based hydrazones 3a-z, pyrazolecarboxylates 5a-x and pyrazolylmethanones 6a-u were prepared and screened for their anti-proliferative activity on A549, HeLa, DU145 and MDAMB 231 cell lines. The hydrazone compound 3s with a chloro substituent on the chromanone moiety and a methoxy group on the phenyl ring displayed promising activity on A549, HeLa and DU145 cell lines. The compound 5p with a bromo substituent on the chromanone moiety and a methyl group on the phenyl ring displayed potent activity on DU145.
View Article and Find Full Text PDFMitochondria play a primary role in the pathophysiology of Parkinson's disease (PD), and small molecules that counteract the initial stages of disease may offer therapeutic benefit. In this regard, we have examined whether the off-target effects of the Food and Drug Administration (FDA)-approved anti-helminth drug nitazoxanide (NTZ) on mitochondrial respiration could possess any therapeutic potential for PD. Results indicate that MPP-induced loss in oxygen consumption rate (OCR) and ATP production by mitochondria were ameliorated by NTZ in real time by virtue of its mild uncoupling effect.
View Article and Find Full Text PDFDyslipidemia, particularly the elevated serum cholesterol levels, aggravate the pathophysiology of type 2 diabetes. In the present study we explored the relationship between fasting blood sugar and serum lipid parameters in human volunteers which revealed a significant linear effect of serum cholesterol on fasting blood glucose. Short term feeding of cholesterol enriched diet to rodent model resulted in elevated serum cholesterol levels, cholesterol accumulation in pancreatic islets and hyperinsulinemia with modest increase in plasma glucose level.
View Article and Find Full Text PDFNucleotide-binding oligomerization domain protein-2 (NOD2) activation in skeletal muscle cells has been associated with insulin resistance, but the underlying mechanisms are not yet clear. Here we demonstrate the implication of oxidative stress in the development of mitochondrial dysfunction and insulin resistance in response to NOD2 activation in skeletal muscle cells. Treatment with the selective NOD2 ligand muramyl dipeptide (MDP) increased mitochondrial reactive oxygen species (ROS) generation in L6 myotubes.
View Article and Find Full Text PDFA series of novel 4β-[(5-substituted)-1,2,3,4-tetrazolyl] podophyllotoxin derivatives were synthesized by employing azide-nitrile click chemistry approach. All the derivatives were evaluated for their cytotoxicity against a panel of four human cancer cell lines and their IC50 values were found to be in the range of 2.4-29.
View Article and Find Full Text PDFMitochondrial dysfunction in skeletal muscle has been implicated in the development of insulin resistance, a major characteristic of type 2 diabetes. There is evidence that oxidative stress results from the increased production of reactive oxygen species and reactive nitrogen species leads to mitochondrial dysfunction, tissue damage, insulin resistance, and other complications observed in type 2 diabetes. It has been suggested that intake of high fructose contributes to insulin resistance and other metabolic disturbances.
View Article and Find Full Text PDFThree series of compounds; pyridinyl-1H-1,2,3-triazoles, pyridinyl-1H-1,2,3-triazolylisoxazoles and pyridinyl-1H-1,2,3-triazolyldihydroisoxazoles with TMP moiety were designed, synthesized and screened for their anti-cancer and anti-tubulin properties. By sequentially designing three series of compounds comprising of dihydroisoxazole in the linker, a small substituent like chlorine on one side (R(1)) and aromatic group (R) on the pyridine ring, we have optimized the anti-cancer as well as anti-tubulin activity. Pyridinyl-1H-1,2,3-triazolyldihydroisoxazoles 28b and 28c were found to be potent anti-cancer agents against all the cell lines tested with a concomitant accumulation of cells in the G2/M phase of the cell cycle.
View Article and Find Full Text PDFA three-component, four-center Ugi reaction has been developed to produce a novel class of 2-aryl-3-oxo-hexahydroazepino[3,4-b]indole and 2-aryl-3-oxo-tetrahydro-1H-pyrido[3,4-b]indole derivatives in good to high yields. A few of them exhibit moderate cytotoxicity against various cancer cell lines such as HeLa (human epithelial cervical cancer), A549 (human lung carcinoma epithelial), DU145 (human prostate carcinoma epithelial) and MCF-7 (human breast adenocarcinoma).
View Article and Find Full Text PDFAbnormal oligomerization and aggregation of α-synuclein (α-syn/WT-syn) has been shown to be a precipitating factor in the pathophysiology of Parkinson's disease (PD). Earlier observations on the induced-alternative splicing of α-syn by Parkinsonism mimetics as well as identification of region specific abnormalities in the transcript levels of 112-synuclein (112-syn) in diseased subjects underscores the role of 112-syn in the pathophysiology of PD. In the present study, we sought to identify the aggregation potential of 112-syn in the presence or absence of WT-syn to predict its plausible role in protein aggregation events.
View Article and Find Full Text PDFThe ubiquitin-proteasome system facilitates the degradation of ubiquitin-tagged proteins and performs a regulatory role in cells. Elevated proteasome activity and subunit expression are found in several cancers. However, the inherent molecular mechanisms responsible for increased proteasome function in cancers remain unclear despite the well investigated and defined role of the mammalian proteasome.
View Article and Find Full Text PDFThe natural product embelin has been demonstrated to possess a wide range of therapeutic properties, however, the mechanisms by which it exerts anticancer effects are not yet clear. By monitoring the molecular changes associated during early apoptotic phase, we have identified the crucial role of oxidative stress induced MAP kinase signalling as a predominant mechanism for its anticancer effects. Treatment of A549 lung cancer cells with embelin resulted in the enhancement of phospho-p38 and phospho-JNK levels as early as 4h.
View Article and Find Full Text PDFThe chemical investigation of soft coral Sinularia kavarattiensis is described. It yielded furano-sesquiterpene carboxylic acids 1 and 2 and their methyl esters 3 and 4. Semi-synthesis of furano-sesquiterpene carboxylic acid 1 gave amide derivatives 5-12.
View Article and Find Full Text PDFTwo new series of compounds E-2,3,4-trimethoxy-6-styrylbiphenyls and 2,3,4-trimethoxy-6-(1-phenylvinyl)biphenyls were designed, synthesized and evaluated for antitubulin activity. A common intermediate 4,5,6-trimethoxybiphenyl-2-carbaldehydes was employed to generate the two scaffolds. Majority of the analogs inhibited cell proliferation and those functionalized with 3,4-(1,3-dioxolane) and 3,4-difluoro groups were identified as effective inhibitors in both the series.
View Article and Find Full Text PDFJ Med Chem
April 2012
A molecular hybridization approach is an emerging structural modification tool to design new molecules with improved pharmacophoric properties. In this study, 1,2,3-triazole-based Mycobacterium tuberculosis inhibitors and synthetic and natural product-based tricyclic (carbazole, dibenzo[b,d]furan, and dibenzo[b,d]thiophene) antimycobacterial agents were integrated in one molecular platform to prepare various novel clubbed 1,2,3-triazole hybrids using click chemistry. Structure-activity correlations and in vitro activity against M.
View Article and Find Full Text PDF