Favipiravir, a high dose antiviral drug effective for oral treatment for COVID-19, with poor water solubility is formulated using a simple, low-cost melt coating and granulation methodology. High-dose (82.5 % w/w API) tablets (600 mg and 800 mg) with desired release profiles are developed while minimizing excipient burden.
View Article and Find Full Text PDFLipid droplets (LDs) have drawn much attention in recent years. They serve as the energy reservoir of cells and also play an important role in numerous physiological processes. Furthermore, LDs are found to be associated with several pathological conditions, including cancer and diabetes mellitus.
View Article and Find Full Text PDFWhile macromixing (gross uniformity) has received a lot of attention in pharmaceutical powder blending, micromixing (particularly, particle-level aggregation) has been significantly less studied. This study investigated the impact of active pharmaceutical ingredient (API) particle size (D: 11, 28, and 70 µm) and blending shear rate (low and high) that was caused by tumbling blending (specifically, a V-blender) on micro-mixing. The effect on micro-mixing (API domain sizes) was assessed in direct compression tablets using high-resolution Raman chemical mapping.
View Article and Find Full Text PDFObtaining a homogeneous low-dose pharmaceutical powder blend without multi-step processing remains a challenge. One promising technology to address this risk is resonant acoustic mixing (RAM). In this study, the performance of a laboratory resonant acoustic mixer (LabRAM) was studied at low active pharmaceutical ingredient (API) concentrations (0.
View Article and Find Full Text PDFA better understanding of a pharmaceutical tablet's microstructure has the potential to unlock the black box between material attributes, process parameters and the critical quality attributes. Microstructure determination requires measuring the spatial-, particle size-distributions (absolute and relative) of the ingredients, and the void space, which is the overt goal of chemical Imaging (CI). Reliable quantitative results can be obtained by imaging multiple layers per tablet, with each layer having a minimal surface roughness.
View Article and Find Full Text PDFWhile continuous manufacturing (CM) of pharmaceutical solid-based drug products has been shown to be advantageous for improving the product quality and process efficiency in alignment with FDA's support of the quality-by-design paradigm (Lee, 2015; Ierapetritou et al., 2016; Plumb, 2005; Schaber, 2011), it is critical to enable full utilization of CM technology for robust production and commercialization (Schaber, 2011; Byrn, 2015). To do so, an important prerequisite is to obtain a detailed understanding of overall process characteristics to develop cost-effective and accurate predictive models for unit operations and process flowsheets.
View Article and Find Full Text PDFRaman chemical mapping is an inherently slow analysis tool. Accurate and robust multivariate analysis algorithms, which require least amount of time and effort in method development are desirable. Calibration-free regression and resolution approaches such as classical least squares (CLS) and multivariate curve resolution using alternating least squares (MCR-ALS), respectively, help in reducing the resources required for method development.
View Article and Find Full Text PDFLow dose micro-tablets with acceptable quality attributes, specifically content uniformity (CU), would not only enhance the dose flexibility in the clinic, but also decrease excipient burden in pediatric population. Considering the CU challenges associated with directly compressed low dose micro-tablets, in this study, high shear wet granulation (HSWG) process was evaluated to manufacture micro-tablets with reduced CU variability. The impact of active pharmaceutical ingredient (API) particle size (D - 18-180 µm) and loading (0.
View Article and Find Full Text PDFDensity functional theory based calculations have been carried out to systematically investigate the structural and optoelectronic properties of pyridine-furan, pyridine-pyrrole and pyridine-thiophene oligomers. Comparison of results obtained at B3LYP/6-31G(d) and B3LYP-D3/6-31G(d) levels of theories reveals that the inclusion of dispersion correction with the B3LYP functional has a major impact on ground state structures and stabilities of the most stable conformers, which are helical for our studied systems. Calculation of stabilization energies, gained due to non-bonding interaction between adjacent helical turns, shows that stabilities of helical oligomers increase with an increase in the chain length.
View Article and Find Full Text PDF