Publications by authors named "Shashwat Banerjee"

Capturing circulating tumor cells (CTCs) from the peripheral blood of cancer patients, where they are disseminated among billions of other blood cells, is one of the most daunting challenge. We report OncoDiscover®, a multicomponent nano-system consisting of iron oxide (FeO) nanoparticles (NPs), polyamidoamine generation 4 dendrimers (PAMAM-G4-NH), graphene oxide (GO) sheets and an anti-epithelial cell adhesion molecule (anti-EpCAM) antibody (Fe-GSH-PAMAM-GO-EpCAM) for the selective and precise capture of CTCs. We further evaluated this system for therapeutically important oncotargets, exemplifying overexpression of the programmed death ligand 1 (PD-L1) as a functional assay on CTCs in cancer patients.

View Article and Find Full Text PDF

Nanosized robots with self-propelling and navigating capabilities have become an exciting field of research, attributable to their autonomous motion and specific biomolecular interaction ability for bio-analysis and diagnosis. Here, we report magnesium (Mg)-FeO-based Magneto-Fluorescent Nanorobot ("MFN") that can self-propel in blood without any other additives and can selectively and rapidly isolate cancer cells. The nanobots viz; Mg-FeO-GSH-G4-Cy5-Tf and Mg-FeO-GSH-G4-Cy5-Ab have been designed and synthesized by simple surface modifications and conjugation chemistry to assemble multiple components viz; (i) EpCAM antibody/transferrin, (ii) cyanine 5 NHS (Cy5) dye, (iii) fourth generation (G4) dendrimers for multiple conjugation and (iv) glutathione (GSH) by chemical conjugation onto one side of Mg nanoparticle.

View Article and Find Full Text PDF

Correction for 'Designing 3D-nanosubstrates mimicking biological cell growth: pitfalls of using 2D substrates in the evaluation of anticancer efficiency' by Ashwini Patil , , 2021, 13, 17473-17485, DOI: 10.1039/d1nr03816h.

View Article and Find Full Text PDF

Designing nano-substrates (NS) that support three-dimensional (3D) cell growth using physico-chemical interventions mimicking the cellular microenvironment is highly challenging. Here we report NS that assist 3D cell development (3D NS) using multi-components on a glass substrate (2D GS), which mimics the tissue microenvironment and promotes 3D cell growth superior to conventional 2D cell culturing methodologies. 3D NS were chemically fabricated by linking the combination of advanced materials imparting different physico-chemical traits, for example, multiwalled carbon nanotubes (CNT), graphene (G), bovine serum albumin (BSA), and iron oxide magnetic nanoparticles (MNP).

View Article and Find Full Text PDF

Control of the sub-cellular localization of nanoparticles (NPs) with enhanced drug-loading capacity, employing graphene oxide (GO), iron oxide (FeO) NPs and sandwiched deoxyribonucleic acid (DNA) bearing intercalated anticancer drug doxorubicin (DOX) has been investigated in this work. The nanosystems G-DNA-DOX-FeO and FeO-DNA-DOX differentially influence serum protein binding and deliver DOX to lysosomal compartments of cervical cancer (HeLa) cells with enhanced retention. Stern-Volmer plots describing BSA adsorption on the nanosystems demonstrated the quenching constants, for G-DNA-DOX-FeO and FeO-DNA-DOX (0.

View Article and Find Full Text PDF

Here we report nanocarrier-anticancer drug conjugates culpable for cellular deformations, critically evidenced through image-based analysis as a measure of karyoplasmic ratio (KR) and nuclear surface area (NSA). Multiwalled carbon nanotubes (MWCNTs) were coordinated additionally with Fe3O4 nanoparticles (NPs) to evaluate the symbiotic influence, and further conjugated to Dox for evaluating the cellular kinetics and for measuring cell deformations. Cellular entry kinetics of the CNT (CNT-Dox and CNT-Cys-Fe3O4-Dox) nanocarriers and their efficiency in nuclear localization were evaluated using cervical cancer (HeLa) cells.

View Article and Find Full Text PDF

Spatial arrangement for cells and the opportunity thereof have implications in cell regeneration and cell proliferation. 3D inverse space (3DIS) substrates with micron-sized pores are fabricated under controlled environmental conditions from polymers such as poly(lactic--glycolic) acid (PLGA), poly(lactic acid) (PLA) and poly(styrene) (PS). The characterization of 3DIS substrates by optical microscopy, scanning probe microscopy (SPM), shows pores within 1-18 μm diameter and prominent surface roughness extending up to 3.

View Article and Find Full Text PDF

Self-propelling magnetic nanorobots capable of intrinsic-navigation in biological fluids with enhanced pharmacokinetics and deeper tissue penetration implicates promising strategy in targeted cancer therapy. Here, multi-component magnetic nanobot designed by chemically conjugating magnetic FeO nanoparticles (NPs), anti-epithelial cell adhesion molecule antibody (anti-EpCAM mAb) to multi-walled carbon nanotubes (CNT) loaded with an anticancer drug, doxorubicin hydrochloride (DOX) is reported. Autonomous propulsion of the nanobots and their external magnetic guidance is enabled by enriching FeO NPs with dual catalytic-magnetic functionality.

View Article and Find Full Text PDF

Cancer diagnosis and its stage-wise assessment are determined through invasive solid tissue biopsies. Conversely, cancer imaging is enriched through emission tomography and longitudinal high-resolution analysis for the early detection of cancer through altered cell morphology and cell-deformation. Similarly, in post multiple chemo-cycle exposures, the tumor regression and progression thereafter are not well understood.

View Article and Find Full Text PDF

Detection of circulating tumor cells (CTCs) in the blood circulation holds immense promise as it predicts the overall probability of patient survival. Therefore, CTC-based technologies are gaining prominence as a "liquid biopsy" for cancer diagnostics and prognostics. Here, we describe the design and synthesis of two distinct multicomponent magnetic nanosystems for rapid capture and detection of CTCs.

View Article and Find Full Text PDF

One of the most vital supports to sustain human life on the planet earth is the agriculture system that has been constantly challenged in terms of yield. Crop losses due to insect pest attack even after excessive use of chemical pesticides, are major concerns for humanity and environment protection. By the virtue of unique properties possessed by micro and nano-structures, their implementation in Agri-biotechnology is largely anticipated.

View Article and Find Full Text PDF

We report calcium phosphate (CaP) nanocapsule crowned multiwalled carbon nanotubes (CNT-GSH-G4-CaP) as a novel platform for intracellular delivery of an anticancer drug. As a proof-of-concept, CNT-GSH-G4-CaP demonstrates release of anticancer drug doxorubicin hydrochloride (DOX) within intracellular lysosomes from the interior cavity of CNT upon pH triggered CaP dissolution. Importantly, we found that the CNT with a CaP nanolid can efficiently prevent untimely drug release at physiological pH but promotes DOX release at increased acidic milieu as observed in subcellular compartments such as lysosomes (∼5.

View Article and Find Full Text PDF

Here, we report a non-invasive strategy for isolating cancer cells by autonomously propelled carbon nanotube (CNT) microrockets. H2O2-driven oxygen (O2) bubble-propelled microrockets were synthesized using CNT and Fe3O4 nanoparticles in the inner surface and covalently conjugating transferrin on the outer surface. Results show that self-propellant microrockets can specifically capture cancer cells.

View Article and Find Full Text PDF

Advanced delivery systems, such as nano/micro carriers have not been studied significantly for their molecular interactions with serum proteins and other biologically relevant macromolecules. Here, we investigated the effect of surface chemistry of iron oxide (Fe3O4) nanoparticles on molecular interactions with human insulin by fluorescence, XRD and FTIR spectroscopy. Nanoparticles of Fe3O4 were chemically modified as Fe3O4-glutathione (GSH) and Fe3O4-GSH-polyamidoamine generation 4 (PAMAM G4) dendrimer.

View Article and Find Full Text PDF

Carbon nanostructures such as multiwalled carbon nanotubes (CNT) and graphene (G) are potential candidates in a large number of biomedical applications. However, there is limited understanding and connection between the physicochemical properties of diverse carbon nanostructures and biological systems, particularly with regard to cellular responses. It is also crucial to understand how the structure and surface composition of carbon nanostructures affect the cellular internalization process.

View Article and Find Full Text PDF

Many polymer based drug delivery nanosystems are currently being explored for delivering cytotoxic agents to the tumors. However, very few strategies delineate the comparative carrier ability of nanosystems, in similar experimental settings. As a result, it remains unclear how to optimally design polymer based multicomponent prodrug systems for delivery applications.

View Article and Find Full Text PDF

A multicomponent magneto-dendritic nanosystem (MDNS) is designed for rapid tumor cell targeting, isolation, and high-resolution imaging by a facile bioconjugation approach. The highly efficient and rapid-acting MDNS provides a convenient platform for simultaneous isolation and high-resolution imaging of tumor cells, potentially leading towards an early diagnosis of cancer.

View Article and Find Full Text PDF

We describe a novel multicomponent graphene nanostructured system that is biocompatible, and has strong NIR optical absorbance and superparamagnetic properties. The fabrication of the multicomponent nanostructure system involves the covalent attachment of 3 components; Fe(3)O(4)(Fe) nanoparticles, PAMAM-G4-NH(2) (G4) dendrimer and Cy5 (Cy) on a graphene oxide (GO) surface to synthesize a biologically relevant multifunctional system. The resultant GO-G4-Fe-Cy nanosystem exhibits high dispersion in an aqueous medium, and is magnetically responsive and fluorescent.

View Article and Find Full Text PDF

To understand the combined effects of ZnO, SiO(2), and SrO doping on mechanical and biological properties of tricalcium phosphate (TCP) ceramics, dense β-TCP compacts of different compositions (pure β-TCP; 1.0 wt % SrO; 0.25 wt % ZnO; 1.

View Article and Find Full Text PDF

Poly(ethylene glycol) (PEG) is the most widely used polymer in delivering anticancer drugs clinically. PEGylation (i.e.

View Article and Find Full Text PDF

A transferrin-conjugated PEG-Fe(3) O(4) nanostructured matrix is developed to explore cellular responses in terms of enhanced cell adhesion, specific interactions between ligands in the matrix and molecular receptors on the cell membrane, comparison of cell shapes on 2D and 3D surfaces, and effect of polymer architecture on cell adhesion. Integration of such advanced synthetic nanomaterials into a functionalized 3D matrix to control cell behavior on surfaces will have implications in nanomedicine.

View Article and Find Full Text PDF

We report synthesis of a highly versatile multicomponent nanosystem by covalently decorating the surface of multiwalled carbon nanotubes (CNTs) by magnetite nanoparticles (Fe(3)O(4)), poly(ethylene glycol) (PEG), and fluorophore fluorescein isothiocyanate (FITC). The resulting Fe(3)O(4)-PEG-FITC-CNT nanosystem demonstrates high dispersion ability in an aqueous medium, magnetic responsiveness, and fluorescent capacity. Transmission electron microscopy images revealed that Fe(3)O(4) nanoparticles were well anchored onto the surfaces of the CNT.

View Article and Find Full Text PDF

The aim of this work is to evaluate the influence of MgO, SrO and SiO₂ doping on mechanical and biological properties of β-tricalcium phosphate (β-TCP) to achieve controlled resorption kinetics of β-TCP system for maxillofacial and spinal fusion application. We prepared dense TCP compacts of four different compositions, i) pure β-TCP, ii) β-TCP with 1.0wt.

View Article and Find Full Text PDF

In this study, we applied electrical polarization technique to increase adsorption and control protein release from biphasic calcium phosphate (BCP). Three different biphasic calcium phosphate (BCP) composites, with hydroxyapatite (HAp) and β-tricalcium phosphate (β-TCP), were processed and electrically polarized. Our study showed that stored charge was increased in the composites with the increase in HAp percentage.

View Article and Find Full Text PDF

The objective of this study was to evaluate the influence of MgO and SrO doping on the mechanical and biological properties of beta-tricalcium phosphate (beta-TCP). beta-TCP was doped with two different binary compositions, 0.25 and 1.

View Article and Find Full Text PDF