This paper reports on the use of coherent microwave scattering (CMS) for spatially resolved electron number density measurements of elongated plasma structures induced at mid-IR femtosecond filamentation in air. The presented studies comprise one-dimensional mapping of laser filaments induced via 3.9 µm, 127.
View Article and Find Full Text PDFThe introduction of mid-IR optical parametric chirped pulse amplifiers has catalyzed interest in multimillijoule, infrared femtosecond pulse-based filamentation. As tunneling ionization is a fundamental first stage in these high-intensity laser-matter interactions, characterizing the process is critical to understand derivative topical studies on femtosecond filamentation and self-focusing. Here, we report direct nonintrusive measurements of total electron count and electron number densities generated at 3.
View Article and Find Full Text PDFIn this work, coherent microwave scattering in the Thomson regime was demonstrated for small-scale plasmas enclosed within a glass tube and validated using a well-known hairpin resonator probe technique. The experiments were conducted in a DC discharge tube with a diameter of 1.5 cm and a length of 7 cm.
View Article and Find Full Text PDFThe total number of electrons in a classical microplasma can be non-intrusively measured through elastic in-phase coherent microwave scattering (CMS). Here, we establish a theoretical basis for the CMS diagnostic technique with an emphasis on Thomson and collisional scattering in short, thin unmagnetized plasma media. Experimental validation of the diagnostic is subsequently performed via linearly polarized, variable frequency (10.
View Article and Find Full Text PDFMultiphoton ionization (MPI) is a fundamental first step in high-energy laser-matter interaction and is important for understanding the mechanism of plasma formation. With the discovery of MPI more than 50 years ago, there were numerous attempts to determine the basic physical constants of this process in direct experiments, namely photoionization rates and cross-sections of the MPI; however, no reliable data was available until now, and the spread in the literature values often reaches 2-3 orders of magnitude. This is due to the inability to conduct absolute measurements of plasma electron numbers generated by MPI, which leads to uncertainties and, sometimes, contradictions between MPI cross-section values utilized by different researchers across the field.
View Article and Find Full Text PDFNanotechnology
June 2017
Graphene platelet networks (GPNs) comprised of randomly oriented graphene flakes two to three atomic layers thick are synthesized using a novel plasma-based approach. The approach uses a substrate capable of withstanding synthesis temperatures around 800 °C, but is fully independent of the substrate material. The synthesis occurs directly on the substrate surface without the necessity of any additional steps.
View Article and Find Full Text PDFIt has been reported since late 1970 that magnetic field interacts strongly with biological systems. Cold atmospheric plasma (CAP) has also been widely studied over the past few decades in physics, biology, and medicine. In this study, we propose a novel idea to combine static magnetic field (SMF) with CAP as a tool for cancer therapy.
View Article and Find Full Text PDFElectric discharge utilized for electrosurgery is studied by means of a recently developed method for the diagnostics of small-size atmospheric plasma objects based on Rayleigh scattering of microwaves on the plasma volume. Evolution of the plasma parameters in the near-electrode sheaths and in the positive column is measured and analyzed. It is found that the electrosurgical system produces a glow discharge of alternating current with strongly contracted positive column with current densities reaching 10(3) A/cm(2).
View Article and Find Full Text PDFBackground: Recent breakthroughs have allowed for production of plasma at room temperature. Cold atmospheric plasma (CAP) may offer the capability of delivering reactive oxygen species directly into tissues, representing a novel modality for targeted cancer therapy. We studied helium-based CAP's effect on neuroblastoma, both in-vitro and in an in-vivo murine model.
View Article and Find Full Text PDFPlasma Sources Sci Technol
June 2012
This work presents a simple method for the characterization of streamers developing in cold atmospheric plasma jets. The method is based upon stopping ("scattering") of streamer by means of external DC potential in order to determine the potential of the streamer head. The experimental evidence presented in this work does not support the model of the electrically insulated streamer head.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
November 2011
It is demonstrated that the diameter distribution of catalyst nanoparticles in arc discharge can be controlled by a magnetic field. The magnetic field affects the arc shape, shortens the diffusing time of the catalyst nanoparticles through the nucleation zone, and consequentially reduces the average diameters of nanoparticles. The average diameter is reduced from about 7.
View Article and Find Full Text PDFCarbon nanostructures such as single-walled carbon nanotubes (SWCNT) and graphene attract a deluge of interest of scholars nowadays due to their very promising application for molecular sensors, field effect transistor and super thin and flexible electronic devices(1-4). Anodic arc discharge supported by the erosion of the anode material is one of the most practical and efficient methods, which can provide specific non-equilibrium processes and a high influx of carbon material to the developing structures at relatively higher temperature, and consequently the as-synthesized products have few structural defects and better crystallinity. To further improve the controllability and flexibility of the synthesis of carbon nanostructures in arc discharge, magnetic fields can be applied during the synthesis process according to the strong magnetic responses of arc plasmas.
View Article and Find Full Text PDFBackground: Plasma is an ionised gas that is typically generated in high-temperature laboratory conditions. However, recent progress in atmospheric plasmas has led to the creation of cold plasmas with ion temperature close to room temperature.
Methods: Both in-vitro and in-vivo studies revealed that cold plasmas selectively kill cancer cells.
The unique properties of graphene and carbon nanotubes made them the most promising nanomaterials attracting enormous attention, due to the prospects for applications in various nanodevices, from nanoelectronics to sensors and energy conversion devices. Here we report on a novel deterministic, single-step approach to simultaneous production and magnetic separation of graphene flakes and carbon nanotubes in an arc discharge by splitting the high-temperature growth and low-temperature separation zones using a non-uniform magnetic field and tailor-designed catalyst alloy, and depositing nanotubes and graphene in different areas. Our results are very relevant to the development of commercially-viable, single-step production of bulk amounts of high-quality graphene.
View Article and Find Full Text PDFWe report a method for tuning the distribution of single-wall carbon nanotubes (SWCNTs) produced by the anodic arc production method via the application of nonuniform magnetic fields to the gap region during synthesis. Raman, ultraviolet-visible-near-infrared absorbance and near-infrared fluorescence spectroscopies were used to characterize samples together with scanning electron microscopy. Application of the nonuniform magnetic field 0.
View Article and Find Full Text PDFCorneal scarring is a major cause of blindness worldwide and can result from the deposition of abnormal amounts of collagen fibers lacking the correct size and spacing required to produce a clear cornea. Collagen fiber formation requires a preformed fibronectin (FN) matrix. We demonstrate that the loss of syndecan1 (sdc1) in corneal stromal cells (CSC) impacts cell migration rates, the sizes and composition of focal and fibrillar adhesions, the activation of integrins, and the assembly of fibronectin into fibrils.
View Article and Find Full Text PDFThe electrical resistance of mats of single-wall carbon nanotubes (SWNTs) is measured as a function of mat temperature under various helium pressures, in vacuum and in atmospheric air. The objective of this paper is to study the thermal stability of SWNTs produced in a helium arc discharge in the experimental conditions close to natural conditions of SWNT growth in an arc, using a furnace instead of an arc discharge. For each tested condition, there is a temperature threshold at which the mat's resistance reaches its minimum.
View Article and Find Full Text PDF