Reference sequences and annotations serve as the foundation for many lines of research today, from organism and sequence identification to providing a core description of the genes, transcripts and proteins found in an organism's genome. Interpretation of data including transcriptomics, proteomics, sequence variation and comparative analyses based on reference gene annotations informs our understanding of gene function and possible disease mechanisms, leading to new biomedical discoveries. The Reference Sequence (RefSeq) resource created at the National Center for Biotechnology Information (NCBI) leverages both automatic processes and expert curation to create a robust set of reference sequences of genomic, transcript and protein data spanning the tree of life.
View Article and Find Full Text PDFThe National Center for Biotechnology Information (NCBI) provides online information resources for biology, including the GenBank® nucleic acid sequence database and the PubMed® database of citations and abstracts published in life science journals. NCBI provides search and retrieval operations for most of these data from 35 distinct databases. The E-utilities serve as the programming interface for most of these databases.
View Article and Find Full Text PDFScientists have been trying to identify every gene in the human genome since the initial draft was published in 2001. In the years since, much progress has been made in identifying protein-coding genes, currently estimated to number fewer than 20,000, with an ever-expanding number of distinct protein-coding isoforms. Here we review the status of the human gene catalogue and the efforts to complete it in recent years.
View Article and Find Full Text PDFScientists have been trying to identify all of the genes in the human genome since the initial draft of the genome was published in 2001. Over the intervening years, much progress has been made in identifying protein-coding genes, and the estimated number has shrunk to fewer than 20,000, although the number of distinct protein-coding isoforms has expanded dramatically. The invention of high-throughput RNA sequencing and other technological breakthroughs have led to an explosion in the number of reported non-coding RNA genes, although most of them do not yet have any known function.
View Article and Find Full Text PDFThe National Center for Biotechnology Information (NCBI) provides online information resources for biology, including the GenBank® nucleic acid sequence database and the PubMed® database of citations and abstracts published in life science journals. NCBI provides search and retrieval operations for most of these data from 35 distinct databases. The E-utilities serve as the programming interface for most of these databases.
View Article and Find Full Text PDFComprehensive genome annotation is essential to understand the impact of clinically relevant variants. However, the absence of a standard for clinical reporting and browser display complicates the process of consistent interpretation and reporting. To address these challenges, Ensembl/GENCODE and RefSeq launched a joint initiative, the Matched Annotation from NCBI and EMBL-EBI (MANE) collaboration, to converge on human gene and transcript annotation and to jointly define a high-value set of transcripts and corresponding proteins.
View Article and Find Full Text PDFThe Consensus Coding Sequence (CCDS) project provides a dataset of protein-coding regions that are identically annotated on the human and mouse reference genome assembly in genome annotations produced independently by NCBI and the Ensembl group at EMBL-EBI. This dataset is the product of an international collaboration that includes NCBI, Ensembl, HUGO Gene Nomenclature Committee, Mouse Genome Informatics and University of California, Santa Cruz. Identically annotated coding regions, which are generated using an automated pipeline and pass multiple quality assurance checks, are assigned a stable and tracked identifier (CCDS ID).
View Article and Find Full Text PDFRemarkable progress has been achieved in understanding the mechanisms controlling sex determination, yet the cause for many Disorders of Sex Development (DSD) remains unknown. Of particular interest is a rare XX DSD subtype in which individuals are negative for SRY, the testis determining factor on the Y chromosome, yet develop testes or ovotestes, and both of these phenotypes occur in the same family. This is a naturally occurring disorder in humans (Homo sapiens) and dogs (C.
View Article and Find Full Text PDFKeratins represent a large protein family with essential structural and functional roles in epithelial cells of skin, hair follicles, and other organs. During evolution the genes encoding keratins have undergone multiple rounds of duplication and humans have two clusters with a total of 55 functional keratin genes in their genomes. Due to the high similarity between different keratin paralogs and species-specific differences in gene content, the currently available keratin gene annotation in species with draft genome assemblies such as dog and horse is still imperfect.
View Article and Find Full Text PDFThe RefSeq project at the National Center for Biotechnology Information (NCBI) maintains and curates a publicly available database of annotated genomic, transcript, and protein sequence records (http://www.ncbi.nlm.
View Article and Find Full Text PDFComplete and accurate annotation of the mouse genome is critical to the advancement of research conducted on this important model organism. The National Center for Biotechnology Information (NCBI) develops and maintains many useful resources to assist the mouse research community. In particular, the reference sequence (RefSeq) database provides high-quality annotation of multiple mouse genome assemblies using a combinatorial approach that leverages computation, manual curation, and collaboration.
View Article and Find Full Text PDFThe National Center for Biotechnology Information (NCBI) Reference Sequence (RefSeq) database is a collection of annotated genomic, transcript and protein sequence records derived from data in public sequence archives and from computation, curation and collaboration (http://www.ncbi.nlm.
View Article and Find Full Text PDFMüllerian inhibiting substance (MIS), a secreted glycoprotein in the transforming growth factor-beta family of growth factors, mediates regression of the Müllerian ducts during embryonic sex differentiation in males. In persistent Müllerian duct syndrome (PMDS), rather than undergoing involution, the Müllerian ducts persist in males, giving rise to the uterus, fallopian tubes, and upper vagina. Genetic defects in MIS or its receptor (MISRII) have been identified in patients with PMDS.
View Article and Find Full Text PDF