IEEE Trans Ultrason Ferroelectr Freq Control
October 2024
Piezoelectric films including coatings are widely employed in various electromechanical devices. Precise measurement for piezoelectric film properties is crucial for both piezoelectric material development and design of the piezoelectric devices. However, substrate constraint on the deformation of piezoelectric films could cause significant impacts on the reliability and accuracy of the piezoelectric coefficient measurement.
View Article and Find Full Text PDFTraditionally, the Coulomb repulsion or Peierls instability causes the metal-insulator phase transitions in strongly correlated quantum materials. In comparison, magnetic stress is predicted to drive the metal-insulator transition in materials exhibiting strong spin-lattice coupling. However, this mechanism lacks experimental validation and an in-depth understanding.
View Article and Find Full Text PDFElemental 2D pnictogens (group 15) are an interesting class of materials with tunable band structures and high carrier mobilities. Heavier pnictogens (Sb and Bi) are stable under ambient conditions compared to lighter members (P and As) and are emerging as interesting candidates for various electronic and optoelectronic applications. The reactivity of these materials is due to the presence of a lone pair which can be effectively utilized to tune material properties different functionalization strategies.
View Article and Find Full Text PDFAntimonene and bismuthene are promising members of the 2D pnictogen family with their tunable band gaps, high electronic conductivity, and ambient stability, making them suitable for electronic and optoelectronic applications. However, semi-metal to semiconductor transition occurs only in the mono/bilayer regime, limiting their applications. Covalent functionalization is a versatile method for tuning materials' chemical, electronic, and optical properties and can be explored for tuning the properties of pnictogens.
View Article and Find Full Text PDFThe interaction of light with collective charge oscillations, called plasmon-polariton, and with polar lattice vibrations, called phonon-polariton, are essential for confining light at deep subwavelength dimensions and achieving strong resonances. Traditionally, doped-semiconductors and conducting metal oxides (CMO) are used to achieve plasmon-polaritons in the near-to-mid infrared (IR), while polar dielectrics are utilized for realizing phonon-polaritons in the long-wavelength IR (LWIR) spectral regions. However, demonstrating low-loss plasmon- and phonon-polaritons in one host material will make it attractive for practical applications.
View Article and Find Full Text PDF