Objective: We studied the relationship between chewing rhythmicity, craniomandibular morphology, and age in humans.
Design: Sixty subjects (10M:10F/group×three age groups, viz., 4-8, 10-14, and 17-21 years) participated.
Introduction: The importance of mechanical signals in normal and inflamed cartilage is well established. Chondrocytes respond to changes in the levels of proinflammatory cytokines and mechanical signals during inflammation. Cytokines like interleukin (IL)-1beta suppress homeostatic mechanisms and inhibit cartilage repair and cell proliferation.
View Article and Find Full Text PDFCrit Rev Eukaryot Gene Expr
March 2008
Cartilage is a mechanosensitive tissue, which means that it can perceive and respond to biomechanical signals. Despite the known importance of biomechanical signals in the etiopathogenesis of arthritic diseases and their effectiveness in joint restoration, little is understood about their actions at the cellular level. Recent molecular approaches have revealed that specific biomechanical stimuli and cell interactions generate intracellular signals that are powerful inducers or suppressors of proinflammatory and reparative genes in chondrocytes.
View Article and Find Full Text PDFExercise/joint mobilization is therapeutic for inflammatory joint diseases like rheumatoid and osteoarthritis, but the mechanisms underlying its actions remain poorly understood. We report that biomechanical signals at low/physiological magnitudes are potent inhibitors of inflammation induced by diverse proinflammatory activators like IL-1beta, TNF-alpha, and lipopolysaccharides, in fibrochondrocytes. These signals exert their anti-inflammatory effects by inhibiting phosphorylation of TAK1, a critical point where signals generated by IL-1beta, TNF-alpha, and LPS converge to initiate NF-kappaB signaling cascade and proinflammatory gene induction.
View Article and Find Full Text PDFObjective: While the effects of biomechanical signals in the form of joint movement and exercise are known to be beneficial to inflamed joints, limited information is available regarding the intracellular mechanisms of their actions. This study was undertaken to examine the intracellular mechanisms by which biomechanical signals suppress proinflammatory gene induction by the interleukin-1-beta (IL-1beta)-induced NF-kappaB signaling cascade in articular chondrocytes.
Methods: Primary rat articular chondrocytes were exposed to biomechanical signals in the form of cyclic tensile strain, and the effects on the NF-kappaB signaling cascade were examined by Western blot analysis, real-time polymerase chain reaction, and immunofluorescence.
Fibrochondrocytes of meniscus adapt to changes in their biomechanical environment by mechanisms that are yet to be elucidated. In this study, the mechanoresponsiveness of fibrochondrocytes under normal and inflammatory conditions was investigated. Fibrochondrocytes from rat meniscus were exposed to dynamic tensile forces (DTF) at various magnitudes and frequencies.
View Article and Find Full Text PDF