Publications by authors named "Shashi K Kudugunti"

Glutathione S-transferase (GST) plays a significant role in the metabolism and detoxification of drugs used in treatment of melanoma, resulting in a decrease in drug efficacy. Tyrosinase is an abundant enzyme found in melanoma. In this study, we used a tyrosinase targeted approach to selectively inhibit GST.

View Article and Find Full Text PDF

Several epidemiological studies show that aspirin can act as a chemopreventive agent and decrease the incidences of various cancers including melanoma. In this work, we investigated the in vitro and in vivo efficacy of acetylsalicylic acid (ASA) as an antimelanoma agent in B16-F0 cells and skin B16-F0 melanoma tumor mouse model. Our findings indicate that the IC50 (48 h) for ASA in B16-F0 melanoma cells was 100 μM and that ASA caused a dose- and time-dependent GSH depletion and increase in reactive oxygen species (ROS) formation in B16-F0 melanoma cells.

View Article and Find Full Text PDF

Melanoma is highly metastatic and resistant to chemotherapeutic drugs. Our previous studies have demonstrated that caffeic acid phenethyl ester (CAPE) suppresses the growth of melanoma cells and induces reactive oxygen species generation. However, the exact mechanism of the growth suppressive effects of CAPE was not clear.

View Article and Find Full Text PDF

Glutathione S-transferase (GST) and multidrug resistance-associated proteins (MRPs) play major roles in drug resistance in melanoma. In this study, we investigated caffeic acid phenethyl ester (CAPE) as a selective GST inhibitor in the presence of tyrosinase, which is abundant in melanoma cells. Tyrosinase bioactivates CAPE to an o-quinone, which reacts with glutathione to form CAPE-SG conjugate.

View Article and Find Full Text PDF

In the current work, we investigated the in vitro biochemical mechanism of Caffeic Acid Phenylethyl Ester (CAPE) toxicity and eight hydroxycinnamic/caffeic acid derivatives in vitro, using tyrosinase enzyme as a molecular target in human SK-MEL-28 melanoma cells. Enzymatic reaction models using tyrosinase/O(2) and HRP/H(2)O(2) were used to delineate the role of one- and two-electron oxidation. Ascorbic acid (AA), NADH and GSH depletion were used as markers of quinone formation and oxidative stress in CAPE induced toxicity in melanoma cells.

View Article and Find Full Text PDF

In current work, we investigated the in-vitro efficacy of Caffeic acid Phenethyl Ester (CAPE) as an anti-melanoma agent in five melanoma cell lines B16-F0, B16F10, SK-MEL-28, SK-MEL-5, and MeWo and in-vivo efficacy study in skin B16-F0 melanoma tumor model in C57BL/6 mice. The IC(50) (48 h) of CAPE in above five melanoma cell lines was 15 µM. CAPE (20-200 µM) led to intracellular GSH depletion of 16-54%, and 10-25 fold increase in Reactive Oxygen Species (ROS) formation in B16-F0 cells.

View Article and Find Full Text PDF

Previously, we reported that acetaminophen (APAP) showed selective toxicity towards melanoma cell lines. In the current study, we investigated further the role of tyrosinase in APAP toxicity in SK-MEL-28 melanoma cells in the presence of a short hairpin RNA (shRNA) plasmid, silencing tyrosinase gene. Results from tyrosinase shRNA experiments showed that APAP led to negligible toxicity in shRNA plasmid-treated cells.

View Article and Find Full Text PDF