Over 100 putative driver genes that are associated with multiple recurrently altered pathways were detected in hepatocellular carcinoma (HCC), suggesting that multiple pathways will need to be inhibited for any therapeutic method to be effective. In this context, functional modification of the RNA regulating protein, tristetraprolin (TTP) that regulates approximately 2500 genes represents a promising strategy in HCC therapy. Since overexpression of TTP induces cell death in all cell types, it would be useful to target the regulator of TTP.
View Article and Find Full Text PDFDifferentiated hepatocytes are long-lived and normally do not undergo cell division, however they have the unique capacity to autonomously decide their replication fate after liver injury. In this context, the key players of liver regeneration immediately after injury have not been adequately studied. Using an in vitro liver culture system, we show that after liver injury, p38 mitogen-activated protein kinase (p38MAPK), mitogen-activated protein kinase-activated protein kinase 2 (MK2) and extracellular-signal regulated kinase (Erk)1/2 were activated within 15 min and continued to be phosphorylated for more than 2h.
View Article and Find Full Text PDFRecent evidence indicates that mRNA export is selective, giving priority to a subset of mRNAs that control diverse biological processes including cell proliferation, differentiation, stress response, and cell survival as well as tumor development. The depletion of a member of the mRNA export complex, the THO complex, impairs the expression of only a subset of genes, but causes dramatic changes in phenotype, such as cell cycle inhibition, abnormal differentiation, and importantly apoptosis of stem cells and cancer cells but not normal epithelial cells, hepatocytes, or fibroblasts. Recent exosome sequence data revealed that over 100 driver gene mutations with a number of signaling pathways are involved in human cancer formation, indicating that multiple signaling pathways will need to be inhibited for cancer therapy.
View Article and Find Full Text PDFBackground: One of the most insidious characteristics of cancer is its spread to and ability to compromise distant organs via the complex process of metastasis. Communication between cancer cells and organ-resident cells via cytokines/chemokines and direct cell-cell contacts are key steps for survival, proliferation and invasion of metastasized cancer cells in organs. Precision-cut liver slices (PCLS) are considered to closely reflect the in vivo situation and are potentially useful for studying the interaction of cancer cells with liver-resident cells as well as being a potentially useful tool for screening anti-cancer reagents.
View Article and Find Full Text PDFTranscription of immediate early genes (IEGs) in response to extrinsic and intrinsic signals is tightly regulated at multiple stages. It is known that untranslated regions of the RNA can play a role in these processes. Here we show that THOC5, a member of the TREX (transcription/export) complex, plays a role in expression of only a subset of constitutively active genes, however transcriptome analysis reveals that more than 90% of IEG were not induced by serum in THOC5 depleted cells.
View Article and Find Full Text PDFBackground: THO (Suppressors of the transcriptional defects of hpr1 delta by overexpression) complex 5 (THOC5), an mRNA export protein, is involved in the expression of only 1% of all genes. Using an interferon inducible knockout mouse system, we have previously shown that THOC5 is an essential element in the maintenance of hematopoietic stem cells and cytokine-mediated hematopoiesis in adult mice. Here we interrogate THOC5 function in cell differentiation beyond the hematopoietic system and study pathological changes caused by THOC5 deficiency.
View Article and Find Full Text PDF