Perpendicular magnetic tunnel junction (pMTJ)-based true-random number generators (RNGs) can consume orders of magnitude less energy per bit than CMOS pseudo-RNGs. Here, we numerically investigate with a macrospin Landau-Lifshitz-Gilbert equation solver the use of pMTJs driven by spin-orbit torque to directly sample numbers from arbitrary probability distributions with the help of a tunable probability tree. The tree operates by dynamically biasing sequences of pMTJ relaxation events, called 'coinflips', via an additional applied spin-transfer-torque current.
View Article and Find Full Text PDFThe brain has effectively proven a powerful inspiration for the development of computing architectures in which processing is tightly integrated with memory, communication is event-driven, and analog computation can be performed at scale. These neuromorphic systems increasingly show an ability to improve the efficiency and speed of scientific computing and artificial intelligence applications. Herein, it is proposed that the brain's ubiquitous stochasticity represents an additional source of inspiration for expanding the reach of neuromorphic computing to probabilistic applications.
View Article and Find Full Text PDFThe recently-developed ability to control phosphorous-doping of silicon at an atomic level using scanning tunneling microscopy, a technique known as atomic precision advanced manufacturing (APAM), has allowed us to tailor electronic devices with atomic precision, and thus has emerged as a way to explore new possibilities in Si electronics. In these applications, critical questions include where current flow is actually occurring in or near APAM structures as well as whether leakage currents are present. In general, detection and mapping of current flow in APAM structures are valuable diagnostic tools to obtain reliable devices in digital-enhanced applications.
View Article and Find Full Text PDFTraditional approaches to achieving dopant functionalized Si involve grafting the dopant to the Si substrates through O-Si or C-Si bonds, resulting in indirect attachment of the dopant to the Si. Recently, ultrahigh vacuum work has demonstrated that high densities of direct B-Si bonds enable unprecedented electronic behaviors in Si that make it possible for Si to be used as a next-generation electronic material. As solvothermal approaches are inherently amenable to scale-up, there is currently a push to develop solvothermal approaches for the formation of direct dopant-Si bonds.
View Article and Find Full Text PDFUltradoping introduces unprecedented dopant levels into Si, which transforms its electronic behavior and enables its use as a next-generation electronic material. Commercialization of ultradoping is currently limited by gas-phase ultra-high vacuum requirements. Solvothermal chemistry is amenable to scale-up.
View Article and Find Full Text PDFBackground: While it is believed that good results can be achieved by arthroscopic debridement of partial-thickness tears (PTTs) of <50% tendon thickness, few studies have directly compared the treatment of articular- versus bursal-sided PTTs of <50%.
Purpose: To compare the postoperative outcomes of patients with articular- versus bursal-sided PTTs of <50% tendon thickness that were treated with arthroscopic debridement and selective acromioplasty (for type II or III acromions).
Study Design: Cohort study; Level of evidence, 3.
Cancer is a leading cause of death worldwide. The expression of COX-2 and prostaglandins has not only been associated with various types of cancer but is also directly proportional to their aggressiveness including metastasis. Thus, inhibition of COX-2 activity has been one of the preferred targets for cancer reduction.
View Article and Find Full Text PDFKal-1 is a polyherbal decoction of seven different natural ingredients, traditionally used in controlling sugar levels, inflammatory conditions particularly regulating metabolic and immunoinflammatory balance which are the major factors involved in obesity and related diseases. In the present study, we aimed to investigate the effect of Kal-1 (an abbreviation derived from the procuring source) on diet-induced obesity and type II diabetes using C57BL/6J mice as a model. The present study was performed with two experimental groups involving obese and prediabetic mice as study animals.
View Article and Find Full Text PDFWhen mammalian cells experience DNA damaging stress, they block DNA replication to avoid erroneous replication of the damaged template. The cells that are unable to respond to DNA damage continue faulty DNA replication that results in incorporation of genomic lesions. To understand the regulation of replication machinery during stress, systemic studies have been carried out but they have been restricted to the evaluation of the mRNA levels and therefore have not been able to identify post-transcriptional changes, vital for immediate blocking of the progressing DNA replication.
View Article and Find Full Text PDFBackground: Rotator cuff tears are very common, but little is known about the outcome of nonoperative treatment of symptomatic tears in terms of progression and the need for surgical intervention.
Methods: Fifty-nine shoulders in fifty-four patients (thirty-three women and a mean age of 58.8 years) with rotator cuff tears on initial magnetic resonance imaging who had been managed nonoperatively were studied retrospectively.
We report atomic-scale characterization of the pseudogap state in a high-Tc superconductor, Bi2Sr2CaCu2O(8+delta). The electronic states at low energies within the pseudogap exhibit spatial modulations having an energy-independent incommensurate periodicity. These patterns, which are oriented along the copper-oxygen bond directions, appear to be a consequence of an electronic ordering phenomenon, the observation of which correlates with the pseudogap in the density of electronic states.
View Article and Find Full Text PDF