Globus pallidus externa (GPe) is a nucleus in the basal ganglia circuitry involved in the control of movement. Recent studies have demonstrated a critical role of GPe cell types in Parkinsonism. Specifically increasing the function of parvalbumin (PV) neurons in the GPe has been found to facilitate motor function in a mouse model of Parkinson's disease (PD).
View Article and Find Full Text PDFThe GluN2C subunit of the NMDA receptor is enriched in the neurons in nucleus reticularis of the thalamus (nRT), but its role in regulating their function is not well understood. We found that deletion of GluN2C subunit did not affect spike frequency in response to depolarizing current injection or hyperpolarization-induced rebound burst firing of nRT neurons. D-cycloserine or CIQ (GluN2C/GluN2D positive allosteric modulator) did not affect the depolarization-induced spike frequency in nRT neurons.
View Article and Find Full Text PDFHaploinsufficiency of the AT-rich interactive domain 1B (ARID1B) gene causes autism spectrum disorder and intellectual disability; however, the neurobiological basis for this is unknown. Here we generated Arid1b-knockout mice and examined heterozygotes to model human patients. Arid1b-heterozygous mice showed a decreased number of cortical GABAergic interneurons and reduced proliferation of interneuron progenitors in the ganglionic eminence.
View Article and Find Full Text PDFGlaucoma is a complex group of diseases wherein a selective degeneration of retinal ganglion cells (RGCs) lead to irreversible loss of vision. A comprehensive approach to glaucomatous RGC degeneration may include stem cells to functionally replace dead neurons through transplantation and understand RGCs vulnerability using a disease in a dish stem cell model. Both approaches require the directed generation of stable, functional, and target-specific RGCs from renewable sources of cells, that is, the embryonic stem cells and induced pluripotent stem cells.
View Article and Find Full Text PDFGlaucoma, where the retinal ganglion cells (RGCs) carrying the visual signals from the retina to the visual centers in the brain are progressively lost, is the most common cause of irreversible blindness. The management approaches, whether surgical, pharmacological, or neuroprotective do not reverse the degenerative changes. The stem cell approach to replace dead RGCs is a viable option but currently faces several barriers, such as the lack of a renewable, safe, and ethical source of RGCs that are functional and could establish contacts with bona fide targets.
View Article and Find Full Text PDF