The prevalence of iron deficiency anaemia is a significant issue worldwide, affecting individuals of all ages and often associated with inadequate iron bioavailability. Despite the use of ferrous salt supplements to address anaemia, their limited bioaccessibility and bioavailability in human GIT and adverse impact on food properties remain significant challenges. Hence, this study aims to explore the iron chelation mechanism of an exopolysaccharide EPSKar1 to enhance iron bioaccessibility, bioavailability, and anti-anaemic effects using cell culture and an anaemic rat model.
View Article and Find Full Text PDFBackground And Objectives: Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible, invariably fatal fibrotic lung disease with no lasting option for therapy. Mesenchymal stem cells (MSCs) could be a promising modality for the treatment of IPF. Aim of the study was to investigate improvement in survivability and anti-fibrotic efficacy of human adipose-derived mesenchymal stem cells (AD-MSCs) in comparison with pirfenidone in the bleomycin-induced pulmonary fibrosis model.
View Article and Find Full Text PDF