Publications by authors named "Shasha Feng"

Our sensory adaptation to cold and chemically induced coolness is mediated by the intrinsic property of TRPM8 channels to desensitize. TRPM8 is also implicated in cold-evoked pain disorders and migraine, highlighting its inhibitors as an avenue for pain relief. Despite the importance, the mechanisms of TRPM8 desensitization and inhibition remained unclear.

View Article and Find Full Text PDF

A sandwich "signal-off" type photoelectrochemical (PEC) immunosensor was fabricated based on a composite heterojunction of tungsten oxide/titanium oxide microspheres (WO/TiO) acting as signal amplification platform and carbon microspheres loaded by gold nanoparticles (Cs@Au NPs) utilized as the label for detecting antibody. WO/TiO had excellent photoelectric performance, and the results of Mott-Schottky plots, open-circuit voltage, and electron spin resonance spectroscopy indicated that it belonged to the Z-scheme heterojunction transfer mechanism of photogenerated carriers. To achieve the sensitization of PEC immunosensor, Cs@Au NP-labeled immunocomplex can effectively reduce the photocurrent signal.

View Article and Find Full Text PDF

Crosstalk between ion channels and small GTPases is critical during homeostasis and disease, but little is known about the structural underpinnings of these interactions. TRPV4 is a polymodal, calcium-permeable cation channel that has emerged as a potential therapeutic target in multiple conditions. Gain-of-function mutations also cause hereditary neuromuscular disease.

View Article and Find Full Text PDF

Since the global outbreak of coronavirus disease 2019 (COVID-19), it has spread rapidly around the world. The nucleocapsid (N) protein is one of the most abundant SARS-CoV-2 proteins. Therefore, a sensitive and effective detection method for SARS-CoV-2 N protein is the focus of research.

View Article and Find Full Text PDF

G-protein coupled receptors (GPCRs) and ion channels serve as key molecular switches through which extracellular stimuli are transformed into intracellular effects, and it has long been postulated that ion channels are direct effector molecules of the alpha subunit of G-proteins (Gα). However, no complete structural evidence supporting the direct interaction between Gα and ion channels is available. Here, we present the cryo-electron microscopy structures of the human transient receptor potential canonical 5 (TRPC5)-Gα complexes with a 4:4 stoichiometry in lipid nanodiscs.

View Article and Find Full Text PDF

Aiming for precise, real-time, and on-site analysis of proteins, an innovative binary-emission fluorescence imprinted polymer was designed by sol-gel method after mixing MIL-101(Cr), green CdTe (g-CdTe) and red CdTe (r-CdTe) for detection of protein. In this proposal, MIL-101(Cr), as a favorable supporter, provided high surface area and porosity for imprinting sites, which ameliorated the transfer rate and the sensitivity of the nanosensor. And g-CdTe and r-CdTe were served as signal transduction for dual-emission response.

View Article and Find Full Text PDF

Molecular dynamics simulations of membranes and membrane proteins serve as computational microscopes, revealing coordinated events at the membrane interface. As G protein-coupled receptors, ion channels, transporters, and membrane-bound enzymes are important drug targets, understanding their drug binding and action mechanisms in a realistic membrane becomes critical. Advances in materials science and physical chemistry further demand an atomistic understanding of lipid domains and interactions between materials and membranes.

View Article and Find Full Text PDF

L-cysteine (L-Cys) capped ZnS fluorescent probe (L-ZnS) were synthesized by binding ZnS nanoparticles in situ with L-Cys, the fluorescence intensity of L-ZnS increased more than 3.5 times than that of ZnS due to the cleavage of S-H bonds and the formation of Zn-S bonds between the thiol group of L-Cys and ZnS. The addition of copper ions (Cu) can effectively quench the fluorescence of L-ZnS to realize the rapid detection of trace Cu.

View Article and Find Full Text PDF

The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seriously threatened global public health. Establishing a rapid and sensitive diagnostic test for early detection of the SARS-CoV-2 nucleocapsid protein is urgently required to defend against the pandemic. Herein, an enhanced lateral flow immunoassay (LFIA) was fabricated by trimetallic Au@Pd@Pt core-shell nanozymes for detection of the SARS-CoV-2 nucleocapsid protein.

View Article and Find Full Text PDF

Transient receptor potential vanilloid (TRPV) channels play various important roles in human physiology. As membrane proteins, these channels are modulated by their endogenous lipid environment as the recent wealth of structural studies has revealed functional and structural lipid binding sites. Additionally, it has been shown that exogenous ligands can exchange with some of these lipids to alter channel gating.

View Article and Find Full Text PDF

A sensitive dual-readout immunosensor for fluorescence and electrochemiluminescence (ECL) detection of ricin was established, which was combined with a streptavidin-biotin signal amplification system. CdSe/ZnS quantum dots with fine fluorescence and ECL properties were used as the dual-signal function probes of the sandwich immunocomplex. Under the optimum experimental conditions, the dual signal intensity increased significantly with the rise in ricin concentration.

View Article and Find Full Text PDF

The SARS-CoV-2 pandemic has posed a huge challenge to rapid and accurate diagnosis of SARS-CoV-2 in the early stage of infection. In this work, we developed a novel magnetic/fluorescent dual-modal lateral flow immunoassay (LFIA) based on multifunctional nanobeads for rapid and accurate determination of SARS-CoV-2 nucleocapsid protein (NP). The multifunctional nanobeads were fabricated by using polyethyleneimine (PEI) as a mediate shell to combine superparamagnetic FeO core with dual quantum dot shells (MagDQD).

View Article and Find Full Text PDF

A quantitative structure-activity relationship (QSAR) model for the structure and affinity of abrin aptamers was established. A higher affinity abrin aptamer based on the established QSAR model was screened by site-directed mutagenesis. The fluorescence quenching effect between magnetic microspheres and fluorescent molecules was studied for the first time.

View Article and Find Full Text PDF

The transient receptor potential melastatin 8 (TRPM8) channel is the primary molecular transducer responsible for the cool sensation elicited by menthol and cold in mammals. TRPM8 activation is controlled by cooling compounds together with the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP). Our knowledge of cold sensation and the therapeutic potential of TRPM8 for neuroinflammatory diseases and pain will be enhanced by understanding the structural basis of cooling agonist- and PIP-dependent TRPM8 activation.

View Article and Find Full Text PDF

Rapid, convenient and accurate detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is urgently needed to timely diagnosis of coronavirus pandemic (COVID-19) and control of the epidemic. In this study, a signal-off photoelectrochemical (PEC) immunosensor was constructed for SARS-CoV-2 nucleocapsid (N) protein detection based on a magnetic all-solid-state Z-scheme heterojunction (FeO@SiO@TiO@CdS/Au, FSTCA). Integrating the advantages of magnetic materials and all-solid-state Z-scheme heterostructures, FSTCA was implemented to ligate the capture antibody to form magnetic capture probe (FSTCA/Ab).

View Article and Find Full Text PDF

Enhanced sampling methodologies modifying underlying Hamiltonians can be used for the systems with a rugged potential energy surface that makes it hard to observe convergence using conventional unbiased molecular dynamics (MD) simulations. We present CHARMM-GUI Enhanced Sampler, a web-based tool to prepare various enhanced sampling simulations inputs with user-selected collective variables (CVs). Enhanced Sampler provides inputs for the following nine methods: accelerated MD, Gaussian accelerated MD, conformational flooding, metadynamics, adaptive biasing force, steered MD, temperature replica exchange MD, replica exchange solute tempering 2, and replica exchange umbrella sampling for the method-implemented MD packages including AMBER, CHARMM, GENESIS, GROMACS, NAMD, and OpenMM.

View Article and Find Full Text PDF

Dengue virus (DENV) has developed rapidly in the past few decades and has been becoming the most widespread arbovirus in the world. The vital role of NS2B-NS3 in virus replication and maturation of relevant proteins makes it the most promising target for anti-DENV drug discovery, although none of NS2B-NS3 inhibitors have been approved for the market so far. In this study, potent NS2B-NS3 covalent inhibitors were discovered via chemical modification of a published covalent inhibitor WSL-01 (IC = 129 nM), yielding promising analogs WSL-75 and WSL-84 (IC = 24.

View Article and Find Full Text PDF

The novel CuMnS nanoflower fluorescent probe based on Mn-doped CuS was developed to achieve the fluorescence detection of oxytetracycline hydrochloride (OTC), the fluorescent sensor has good selectivity and stability. The doping of Mn significantly increased the fluorescence intensity of CuS, which was above 10 times that of CuS. When the predominant species of OTC molecule was zwitterionic OTCat the solution pH of about 5.

View Article and Find Full Text PDF

Airborne transmission of pathogens is the most probable cause for the spread of respiratory diseases, which can be intercepted by personal protective equipment such as masks. In this study, an efficient antiviral personal protective filter was fabricated by coupling the biocompatible curcumin (CCM) with nanofibrous polytetrafluoroethylene (PTFE) membrane. The CCM extracted from plants was first dissolved in acidified ethanol at a certain pH and temperature to optimize its loading concentration, antiviral activation, and binding forces on the polyethylene terephthalate (PET) support to form a pre-filtration layer at the front section of the filter.

View Article and Find Full Text PDF

Aflatoxin B1 (AFB1) is a highly toxic fungal contaminant widely found in agricultural products. It causes serious harm to human health and the environment. Thus, a fast and sensitive detection approach is urgently needed to prevent AFB1-contaminated products from entering the market effectively.

View Article and Find Full Text PDF

The wide clinical application of d-penicillamine (D-PA) makes it inevitably accumulates in the environment, seriously threatening human health and the ecological environment. To better supervisory control D-PA, a highly sensitive and reliable photoelectrochemical (PEC) sensor based on gold nanoparticles (Au NPs) loaded on graphitic carbon nitride sheet and hexagonal NH-UiO-66 composite (g-CN/Au/NH-UiO-66) was synthesized. Tactfully using the strong bonding between D-PA and Au NPs and the effective carrier separation of Z-scheme heterojunction, the designed g-CN/Au/NH-UiO-66 PEC sensor without an extra recognition unit exhibited a selective and sensitive photocurrent to D-PA.

View Article and Find Full Text PDF

Lipid self-organization and lipid-water interfaces have been an increasingly important topic positioned at the crossroads of physical chemistry and biology. Some neutral lipids can partition into the biomembrane and play an important biological role. In this study, we have used all-atom molecular dynamics simulations to dissect the partition, aggregation, flip-flop, and modulation of neutral lipids including (i) menaquinone/menaquinol, (ii) ubiquinone/ubiquinol, and (iii) triacylglycerol.

View Article and Find Full Text PDF