Publications by authors named "Sharvari Bhagwat"

Background: Alpha-1 antitrypsin deficiency (AATD) is characterized by low alpha-1 antitrypsin (AAT) levels, predisposing individuals to lung disease. The standard of care, plasma-derived AAT (pdAAT), is delivered as weekly infusions to maintain serum AAT concentrations ≥11µM (≈50% of those in healthy individuals). INBRX-101, a recombinant human AAT-Fc fusion protein, was designed to have a longer half-life and achieve higher AAT levels than pdAAT.

View Article and Find Full Text PDF

Background: Carfilzomib is an irreversible second-generation proteasome inhibitor that has a short elimination half-life but much longer pharmacodynamic (PD) effect based on its irreversible mechanism of action, making it amenable to longer dosing intervals. A mechanistic pharmacokinetic/pharmacodynamic (PK/PD) model was built using a bottom-up approach, based on the mechanism of action of carfilzomib and the biology of the proteasome, to provide further evidence of the comparability of once-weekly and twice-weekly dosing.

Methods: The model was qualified using clinical data from the phase III ENDEAVOR study, where the safety and efficacy of bortezomib (a reversible proteasome inhibitor) and carfilzomib were compared.

View Article and Find Full Text PDF

The therapeutic benefits of metered dose inhalers (MDIs) in pulmonary disorders are mainly driven by aerosol performance, which depends on formulation variables (drug and excipients), device design, and patient interactions. The present study provides a comprehensive investigation to better understand the effect of formulation variables on mometasone furoate (MF) suspension-based MDI product performance. The effects of MF particle size (volume median diameter; X) and excipient concentration (ethanol and oleic acid, cosolvent, and surfactant, respectively) on selected critical quality attributes (delivered dose (DD), fine particle dose of particles lesser than 5 µm (FPD < 5), ex-throat dose and median dissolution time (MDT)) were studied.

View Article and Find Full Text PDF

The aim of this study was to further evaluate and optimize the Transwell system for assessing the dissolution behavior of orally inhaled drug products (OIDPs), using fluticasone propionate as a model drug. Sample preparation involved the collection of a relevant inhalable dose fraction through an anatomical mouth/throat model, resulting in a more uniform presentation of drug particles during the subsequent dissolution test. The method differed from previously published procedures by (1) using a 0.

View Article and Find Full Text PDF

Purpose: The ability of two semi-mechanistic simulation approaches to predict the systemic pharmacokinetics (PK) of inhaled corticosteroids (ICSs) delivered via dry powder inhalers (DPIs) was assessed for mometasone furoate, budesonide and fluticasone propionate.

Methods: Both approaches derived the total lung doses and the central to peripheral lung deposition ratios from clinically relevant cascade impactor studies, but differed in the way the pulmonary absorption rate was derived. In approach 1, the rate of in vivo drug dissolution/absorption was predicted for the included ICSs from in vitro aerodynamic particle size distribution and in vitro drug solubility estimates measured in an in vivo predictive dissolution medium.

View Article and Find Full Text PDF

Assessing the dissolution behavior of orally inhaled drug products (OIDs) has been proposed as an additional in vitro test for the characterization of innovator and generic drug development. A number of suggested dissolution methods (e.g.

View Article and Find Full Text PDF