The majority of students who enroll in undergraduate biology courses will eventually be employed in non-STEM (science, technology, engineering, and mathematics) business occupations. This work explores how representations of industry in undergraduate biology textbooks could impact STEM learning for these students and their ability to apply this learning in their chosen work. We used text analysis to identify passages with references to industry in 29 textbooks.
View Article and Find Full Text PDFBackground: Mutations in the Cu/Zn superoxide dismutase gene (SOD1) are responsible for 20% of familial forms of amyotrophic lateral sclerosis (ALS), and mutant SOD1 has been shown to have increased surface hydrophobicity in vitro. Mutant SOD1 may adopt a complex array of conformations with varying toxicity in vivo. We have used a novel fluorescence-based proteomic assay using 4,4'-bis-1-anilinonaphthalene-8-sulfonate (bisANS) to assess the surface hydrophobicity, and thereby distinguish between different conformations, of SOD1 and other proteins in situ.
View Article and Find Full Text PDFAnimals with an open coelom do not fully constrain internal tissues, and changes in tissue or organ position during body movements cannot be readily discerned from outside of the body. This complicates modeling of soft-bodied locomotion, because it obscures potentially important changes in the center of mass as a result of internal tissue movements. We used phase-contrast synchrotron X-ray imaging and transmission light microscopy to directly visualize internal soft-tissue movements in freely crawling caterpillars.
View Article and Find Full Text PDFDinB is the only translesion Y family DNA polymerase conserved among bacteria, archaea, and eukaryotes. DinB and its orthologs possess a specialized lesion bypass function but also display potentially deleterious -1 frameshift mutagenic phenotypes when overproduced. We show that the DNA damage-inducible proteins UmuD(2) and RecA act in concert to modulate this mutagenic activity.
View Article and Find Full Text PDFMembers of the Y family of DNA polymerases are specialized to replicate lesion-containing DNA. However, they lack 3'-5' exonuclease activity and have reduced fidelity compared to replicative polymerases when copying undamaged templates, and thus are potentially mutagenic. Y family polymerases must be tightly regulated to prevent aberrant mutations on undamaged DNA while permitting replication only under conditions of DNA damage.
View Article and Find Full Text PDFUmuD(2) cleaves and removes its N-terminal 24 amino acids to form UmuD'(2), which activates UmuC for its role in UV-induced mutagenesis in Escherichia coli. Cells with a non-cleavable UmuD exhibit essentially no UV-induced mutagenesis and are hypersensitive to killing by UV light. UmuD binds to the beta processivity clamp ("beta") of the replicative DNA polymerase, pol III.
View Article and Find Full Text PDF