Publications by authors named "Sharopov S"

In the immature brain the neurotransmitter γ-amino butyric acid (GABA) mediates a membrane depolarization and can contribute to both, inhibition and excitation. Therefore the consequences of a positive modulation of GABA(A) receptors by neurosteroids on epileptiform activity are hard to predict. In order to analyze whether neurosteroids attenuate or exaggerate epileptiform activity in the immature brain, we investigated the effect of the neurosteroid allopregnanolone on epileptiform activity in an in-toto hippocampus preparation of early postnatal mice (postnatal days 4-7) using field potential recordings.

View Article and Find Full Text PDF

Learning is essential for survival and is controlled by complex molecular mechanisms including regulation of newly synthesized mRNAs that are required to modify synaptic functions. Despite the well-known role of RNA-binding proteins (RBPs) in mRNA functionality, their detailed regulation during memory consolidation is poorly understood. This study focuses on the brain function of the RBP Gadd45α (growth arrest and DNA damage-inducible protein 45 alpha, encoded by the gene).

View Article and Find Full Text PDF

Programmed cell death widely but heterogeneously affects the developing brain, causing the loss of up to 50% of neurons in rodents. However, whether this heterogeneity originates from neuronal identity and/or network-dependent processes is unknown. Here, we report that the primary motor cortex (M1) and primary somatosensory cortex (S1), two adjacent but functionally distinct areas, display striking differences in density of apoptotic neurons during the early postnatal period.

View Article and Find Full Text PDF

Treatment of apnea of prematurity with methylxanthines like caffeine, aminophylline or theophylline can evoke hippocampal seizures. However, it is unknown at which interstitial brain concentrations methylxanthines promote such neonatal seizures or interfere with physiological 'early network oscillations' (ENOs) that are considered as pivotal for maturation of hippocampal neural networks. We studied theophylline and caffeine effects on ENOs in CA3 neurons (CA3-ENOs) and CA3 electrical stimulation-evoked monosynaptic CA1 field potentials (CA1-FPs) in sliced and intact hippocampi, respectively, from 8 to 10-days-old rats.

View Article and Find Full Text PDF

While the expression of glycine receptors in the immature hippocampus has been shown, no information about the role of glycine receptors in controlling the excitability in the immature CNS is available. Therefore, we examined the effect of glycinergic agonists and antagonists in the CA3 region of an intact corticohippocampal preparation of the immature (postnatal days 4-7) rat using field potential recordings. Bath application of 100 μM taurine or 10 μM glycine enhanced the occurrence of recurrent epileptiform activity induced by 20 μM 4-aminopyridine in low Mg(2+) solution.

View Article and Find Full Text PDF

GABA transporters (GATs) are an essential element of the GABAergic system, which regulate excitability in the central nervous system and are thus used as targets for anticonvulsive therapy. However, in the immature nervous system the functions of the GABAergic system and the expression profile of GATs are distinct from the adult situation, obscuring to predict how different GAT isoforms influence epileptiform activity. Therefore we analyzed the effects of subtype specific GAT inhibitors on repetitive epileptiform discharges using field potential and whole-cell patch-clamp recordings in the CA3 region of hippocampal slices of immature (postnatal days 4-7) rats.

View Article and Find Full Text PDF

Neuroplastic changes at the spinal synapses between primary nociceptors and second order dorsal horn neurons play key roles in pain and analgesia. NMDA receptor-dependent forms of long-term plasticity have been studied extensively at these synapses, but little is known about possible contributions of the endocannabinoid system. Here, we addressed the role of cannabinoid (CB)1 receptors in activity-dependent plasticity at these synapses.

View Article and Find Full Text PDF

To investigate whether epileptiform activity in the immature brain is modulated by dopamine, we examined the effects of dopaminergic agonists and antagonists in an intact in vitro preparation of the isolated corticohippocampal formation of immature (postnatal days 3 and 4) C57/Bl6 mice using field potential recordings from CA3. Epileptiform discharges were induced by a reduction of the extracellular Mg(2+) concentration to 0.2 mM.

View Article and Find Full Text PDF

Purpose:   Despite the consistent observation that γ-aminobutyric acid A (GABA(A) ) receptors mediate excitatory responses at perinatal stages, the role of the GABAergic system in the generation of neonatal epileptiform activity remains controversial. Therefore, we analyzed whether tonic and phasic GABAergic transmission had differential effects on neuronal excitability during early development.

Methods:   We performed whole cell patch-clamp and field potential recordings in the CA3 region of hippocampal slices from immature (postnatal day 4-7) rats to analyze the effect of specific antagonists and modulators of tonic and phasic GABAergic components on neuronal excitability.

View Article and Find Full Text PDF