Publications by authors named "Sharonova I"

Noopept (NP) is a proline-containing dipeptide with nootropic and neuroprotective properties. We have previously shown that NP significantly increased the frequency of spontaneous IPSCs in hippocampal CA1 pyramidal cells mediated by the activation of inhibitory interneurons in stratum radiatum. The cholinergic system plays an important role in the performance of cognitive functions, furthermore multiple behavioral and clinical facts link NP with the cholinergic system.

View Article and Find Full Text PDF

The γ-aminobutyric acid type A (GABA) receptors are pentameric transmembrane protein complexes. They have attracted extensive attention from the scientific community due to their significant pharmacological potential. Here we report the first synthesis of avermectin-imidazo[1,2-a]pyridine hybrids promising as GABA receptor positive allosteric modulators (PAMs).

View Article and Find Full Text PDF

Lypd6 is a GPI-tethered protein from the Ly-6/uPAR family expressed in the brain. Lypd6 enhances the Wnt/β-catenin signaling, although its action on nicotinic acetylcholine receptors (nAChRs) have been also proposed. To investigate a cholinergic activity of Lypd6, we studied a recombinant water-soluble variant of the human protein (ws-Lypd6) containing isolated "three-finger" LU-domain.

View Article and Find Full Text PDF

Peptide mimetic of nerve growth factor GK-2 in a dose of 1-2 mg/liter improves survival of cultured rat cerebellar granule neurons exposed to the cytotoxic effect of zinc ions, but has no protective effect against copper ion cytotoxicity. Experiments on cultured rat hippocampal slices demonstrated that GK-2 did not affect reactivity of pyramidal neurons and long-term potentiation in the hippocampal field CA1 and the probability of glutamate release from presynaptic terminals in the synapses of the CA3-CA1 fields. The results suggest that GK-2 does not affect the functional properties of synaptic transmission under normal conditions, but protects neurons from the toxic effects of zinc, which creates prerequisites for GK-12 use in the treatment of neurodegenerative diseases.

View Article and Find Full Text PDF

Structure-activity relationship studies were conducted in the search for 1,3-thiazole isosteric analogs of imidazopyridine drugs (Zolpidem, Alpidem). Three series of novel γ-aminobutyric acid receptor (GABAR) ligands belonging to imidazo[2,1-b]thiazoles, imidazo[2,1-b][1,3,4]thiadiazoles, and benzo[d]imidazo[2,1-b]thiazoles were synthesized and characterized as active agents against GABAR benzodiazepine-binding site. In each of these series, potent compounds were discovered using a radioligand competition binding assay.

View Article and Find Full Text PDF

Fenamates mefanamic and niflumic acids (MFA and NFA) induced dual potentiating and inhibitory effects on GABA currents recorded in isolated cerebellar Purkinje cells using the whole-cell patch-clamp and fast-application techniques. Regardless of the concentration, both drugs induced a pronounced prolongation of the current response. We demonstrated that the same concentration of drugs can produce both potentiating and inhibitory effects, depending on the GABA concentration, which indicates that both processes take place simultaneously and the net effect depends on the concentrations of both the agonist and fenamate.

View Article and Find Full Text PDF

Voltage clamp and concentration-jump methods were employed to examine the effects of endogenous neuropeptide cycloprolylglycine on GABA-activated ionic currents in isolated cerebellar Purkinje cells. In the concentration range of 0.1-10.

View Article and Find Full Text PDF

The concentration-clamp experiments with neurons isolated from the rat brain showed that nootropic and neuroprotective drug Semax added to perfusion solution at concentration of 1 μM augmented the amplitude of GABA-activated ionic currents in cerebellum Purkinje cells by 147±13%. In addition, Semax in perfusion solution (0.1 and 1 μM) diminished the amplitude of glycine-activated chloride currents in hippocampal pyramidal neurons down to 68 and 43% control level, respectively.

View Article and Find Full Text PDF

A neuroprotective and nootropic drug Noopept increased the frequency of spontaneous calcium transients in neurons of CA1 radial layer in cultured rat hippocampal slices. In contrast, the drug exerted no significant effect on intracellular calcium concentration and its dynamics in neurons of hippocampal CA1 pyramidal layer.

View Article and Find Full Text PDF

Amyloid-β peptide (Aβ) is considered a key protein in the pathogenesis of Alzheimer's disease because of its neurotoxicity, resulting in impaired synaptic function and memory. On the other hand, it was demonstrated that low (picomolar) concentrations of Aβ enhance synaptic plasticity and memory, suggesting that in the healthy brain, physiological Aβ concentrations are necessary for normal cognitive functions. In the present study, we found that Aβ (1-42) in concentrations of 10 pМ - 100nМ enhanced desensitization of the glycine-activated current in isolated CA3 pyramidal neurons and also reversibly suppressed its peak amplitude during short (600ms) co-application with agonist.

View Article and Find Full Text PDF

GABA(A) receptors (GABA(A)R) mainly mediate fast inhibitory neurotransmission in the central nervous system. Different classes of modulators target GABA(A)R properties. Penicillin G (PNG) belongs to the class of noncompetitive antagonists blocking the open GABA(A)R and is a prototype of β-lactam antibiotics.

View Article and Find Full Text PDF

β-Amyloid peptide (Aβ) plays a central role in the pathogenesis of Alzheimer׳s disease, but in lower amounts it is found in normal brains where it participates in physiological processes and probably regulates synaptic plasticity. This study investigated the effects of physiologically relevant concentrations of Aβ (1 pM-100 nM), fragment 25-35, on glycine-mediated membrane current in acutely isolated rat hippocampal pyramidal neurons using whole-cell patch-clamp technique. We have found that short (600 ms) co-application of glycine with Aβ caused reversible dose-dependent and voltage-independent acceleration of desensitization of glycine current.

View Article and Find Full Text PDF

Normal brain aging leads to decrease in cognitive functions, shrink in brain volume, loss of nerve fibers and degenerating myelin, reduction in length and branching of dendrites, partial loss of synapses, and reduction in expression of genes that play central roles in synaptic plasticity, vesicular transport, and mitochondrial functioning. Impaired mitochondrial functions and mitochondrial reactive oxygen species can contribute to the damage of these genes in aging cerebral cortex. This review discusses the possibility of using mitochondria-targeted antioxidants to slow the processes of brain aging.

View Article and Find Full Text PDF

Patch-clamp and concentration jump studies showed that gadolinium ions dose-dependently reduced the amplitude of proton-activated currents (pH 6.5) in isolated Purkinje cells (gadolinium concentration producing a half-maximum effect was 69 microM for the peak and 8 microM for the stationary component of the current). The magnitude of the block did not depend on membrane potential at negative clamping potentials.

View Article and Find Full Text PDF

1. Whole-cell patch-clamp and fast perfusion were used to study the effects of zinc on adenosine 5'-triphosphate (ATP)-induced responses of histaminergic neurons. 2.

View Article and Find Full Text PDF

(1) The pharmacology of ATP responses and the expression pattern of seven known subunits of the P2X receptor were investigated in individual histaminergic neurons of the tuberomamillary nucleus (TM). (2) ATP (3-1000 micro M) evoked fast non-desensitizing inward currents in TM neurons. 2-methylthioATP (2MeSATP) displayed the same efficacy but a lower potency, EC(50)s 84 micro M versus 48 micro M, when compared with ATP.

View Article and Find Full Text PDF

Histaminergic neurons of the tuberomamillary nucleus display pacemaker properties; their firing rate is regulated according to behavioural state by gabaergic inhibition. Whole-cell recordings and single-cell RT-PCR from acutely isolated rat tuberomamillary neurons were used to characterize GABA -evoked currents and to correlate them with the expression pattern of 12 GABAA receptor subunits. We report differences in sensitivity to GABA and zinc as well as in the modulation of IPSC-decay times by zolpidem in histaminergic neurons expressing gamma-subunits at different levels.

View Article and Find Full Text PDF

Pretreatment with 10 microM of the antifungal drug clotrimazole potently reduced the death of cultured rat cerebellar granule cells induced by oxygen/glucose deprivation, and the excitotoxic effect of glutamate on cultured hippocampal neurons and cerebellar granule cells. In patch-clamped hippocampal pyramidal neurons, 10-50 microM clotrimazole caused a decrease in the amplitude of N-methyl-D-aspartate (NMDA) receptor-mediated currents. Glutamate induced intracellular Ca(2+) overload, as measured by Fluo-3 confocal fluorescence imaging, while clotrimazole reduced Ca(2+) overload and promoted the recovery of intracellular calcium homeostasis after glutamate treatment.

View Article and Find Full Text PDF

The action of diuretic furosemide on the GABA(A) receptor was studied in acutely isolated Purkinje cells using the whole-cell recording and fast application system. Furosemide blocked stationary component of GABA-activated currents in a concentration-dependent manner with IC(50) value > 5 mM at -70 mV. The inhibition was rapid in the onset, fully reversible and did not require drug pre-perfusion.

View Article and Find Full Text PDF

The modulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazol-propionate (AMPA) receptor-mediated currents by cyclothiazide was investigated in acutely isolated cells from rat striatum with whole-cell patch-clamp recording. Single-cell reverse transcriptase-polymerase chain reaction (RT-PCR) was used to identify medium spiny and giant aspiny neurons and to determine their AMPA receptor subunit composition mostly in separate experiments. After pretreatment with cyclothiazide, kainate-induced AMPA responses were more strongly potentiated in medium spiny than in giant aspiny neurons; cyclothiazide induced a ninefold leftward shift in the kainate concentration-response curve for medium spiny neurons (not giant aspiny neurons).

View Article and Find Full Text PDF

Nanomolar concentrations of Cu(2+) induce a slowly reversible block of GABA(A) receptor-mediated currents which can be removed by chelating substances. The possible interaction of Cu(2+) with the Zn(2+) binding site on the GABA(A) receptor complex was studied in acutely isolated Purkinje cells using whole-cell recording and a fast drug application system. When Zn(2+) was applied together with 2 microM GABA, the Zn(2+)-induced block of GABA-mediated currents was not additive to the Cu(2+)-induced block.

View Article and Find Full Text PDF

The properties of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors were examined in various cell types isolated from young rat hippocampus, striatum and cerebellum using patch-clamp and fast application techniques. A dicationic adamantane derivative, IEM-1460, reversibly inhibited kainate-induced currents. In the presence of 100 microM IEM-1460, kainate currents in striatal giant cholinergic interneurons and hippocampal non-pyramidal neurons were inhibited by 95% and 81%, respectively, at Vh = - 70 mV.

View Article and Find Full Text PDF

Dicationic adamantane derivative, IEM-1460, which selectively blocks GluR2-lacking, Ca2+-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors, was used to characterize the distribution of AMPA receptors among populations of rat brain cells. IEM-1460 inhibited kainate-induced inward currents (at -80 mV) in a dose-dependent manner. IEM-1460 concentrations producing 50% inhibition of kainate-induced current amplitude (IC50) varied greatly depending on the cell type studied.

View Article and Find Full Text PDF

The actions of Cu2+ ions on GABAA receptor-mediated currents in acutely isolated Purkinje cells from rat cerebellum were studied using the whole-cell patch-clamp technique and a rapid perfusion system. Bath application of Cu2+ reduced currents induced by 2 microM gamma-aminobutyric acid (GABA) in a concentration-dependent manner with an IC50 of 35 nM. The Cu2+-induced block of GABA responses was not voltage-dependent.

View Article and Find Full Text PDF