Background: Despite the extensive genetic diversity of HIV-1, viral evolution in response to immune selective pressures follows broadly predictable mutational patterns. Sites and pathways of Human Leukocyte-Antigen (HLA)-associated polymorphisms in HIV-1 have been identified through the analysis of population-level data, but the full extent of immune escape pathways remains incompletely characterized. Here, in the largest analysis of HIV-1 subtype B sequences undertaken to date, we identify HLA-associated polymorphisms in the three HIV-1 proteins most commonly considered in cellular-based vaccine strategies.
View Article and Find Full Text PDFObjective: Selection of specific human leukocyte antigen (HLA)-restricted cytotoxic T-lymphocyte (CTL) escape mutations in key Gag epitopes has been associated with loss of HIV immune control on an individual basis. Here we undertake a population-based identification of HLA-associated polymorphisms in Gag and investigate their relationship with plasma viral load.
Design: Cross-sectional analysis of 567 chronically HIV subtype B-infected, treatment-naive individuals.