Publications by authors named "Sharon Swartz"

Theoretically, animals with longer hindlimbs are better jumpers, while those with shorter hindlimbs are better maneuverers. Yet experimental evidence of this relationship in mammals is lacking. We compared jump force and maneuverability in a lab population of Mongolian gerbils (Meriones unguiculatus).

View Article and Find Full Text PDF

Bats and birds are the only living vertebrates capable of powered flight. However, bats differ from birds in that their flight required the evolution of ascending landing maneuvers that achieve their iconic head-under-heels roosting posture. We examined the evolution of landing flight in bats and tested its association with the physical properties of roosts.

View Article and Find Full Text PDF

Studying the detailed biomechanics of flying animals requires accurate three-dimensional coordinates for key anatomical landmarks. Traditionally, this relies on manually digitizing animal videos, a labor-intensive task that scales poorly with increasing framerates and numbers of cameras. Here, we present a workflow that combines deep learning-powered automatic digitization with filtering and correction of mislabeled points using quality metrics from deep learning and 3D reconstruction.

View Article and Find Full Text PDF

A predator's capacity to catch prey depends on its ability to navigate its environment in response to prey movements or escape behaviour. In predator-prey interactions that involve an active chase, pursuit behaviour can be studied as the collection of rules that dictate how a predator should steer to capture prey. It remains unclear how variable this behaviour is within and across species since most studies have detailed the pursuit behaviour of high-speed, open-area foragers.

View Article and Find Full Text PDF

AbstractMuscle contractile properties are dependent on temperature: cooler temperatures generally slow contractile rates. Contraction and relaxation are driven by underlying biochemical systems, which are inherently sensitive to temperature. , a small Neotropical bat, experiences large temperature differentials among body regions, resulting in a steep gradient in temperature along the wing.

View Article and Find Full Text PDF

Bat wing membranes are composed of specialized skin that is covered with small sensory hairs which are likely mechanosensory and have been suggested to help bats sense airflow during flight. These sensory hairs have to date been studied in only a few of the more than 1,400 bat species around the world. Little is known about the diversity of the sensory hair network across the bat phylogeny.

View Article and Find Full Text PDF

Whiskers are important tactile structures widely used across mammals for a variety of sensory functions, but it is not known how bats-representing about a fifth of all extant mammal species-use them. Nectar-eating bats typically have long vibrissae (long, stiff hairs) arranged in a forward-facing brush-like formation that is not present in most non-nectarivorous bats. They also commonly use a unique flight strategy to access their food-hovering flight.

View Article and Find Full Text PDF

Bats fly with highly articulated and heavy wings. To understand their power requirements, we develop a three-dimensional reduced-order model, and apply it to flights of , the lesser dog-faced fruit bat. Using previously measured wing kinematics, the model computes aerodynamic forces using blade element momentum theory, and incorporates inertial forces of the flapping wing using the measured mass distribution of the membrane wing and body.

View Article and Find Full Text PDF

Bat wing skin is exceptionally compliant and cambers significantly during flight. Plagiopatagiales proprii, arrays of small muscles embedded in the armwing membrane, are activated during flight and are hypothesized to modulate membrane tension. We examined the function of these muscles using Jamaican fruit bats, Artibeus jamaicensis.

View Article and Find Full Text PDF

Endotherms experience temperature variation among body regions, or regional heterothermy, despite maintaining high core body temperatures. Bat forelimbs are elongated to function as wings, which makes them vulnerable to heat loss and exaggerates regional heterothermy. A tropical bat species, Carollia perspicillata, flies with distal wing muscles that are substantially (>10°C) cooler than proximal wing muscles and significantly less temperature sensitive.

View Article and Find Full Text PDF

Flight is a demanding form of locomotion, requiring fast activation and relaxation in wing muscles to produce the necessary wingbeat frequencies. Bats maintain high body temperatures during flight, but their wing muscles cool under typical environmental conditions. Because distal wing muscles are colder during flight than proximal muscles, we hypothesized that they would be less temperature sensitive to compensate for temperature effects, resulting in proximal-distal differences in temperature sensitivity that match differences in muscle operating temperature.

View Article and Find Full Text PDF
Article Synopsis
  • Bats are capable of high-altitude flight at night, where they climb to over 1,600 meters and achieve speeds of up to 135 km/h, despite traditional beliefs about limited energy sources after dark.
  • Bats utilize orographic uplift and wind gradients to efficiently gain altitude while possibly conserving energy.
  • Detailed GPS tracking and wind data reveal predictable patterns in the bats' ascent, indicating they strategically exploit wind conditions in their nocturnal environment.
View Article and Find Full Text PDF

Disk-winged bats ( spp.) are the only mammals that use suction to cling to smooth surfaces, having evolved suction cups at the bases of the thumbs and feet that facilitate attachment to specialized roosts: the protective funnels of ephemeral furled leaves. We predicted that this combination of specialized morphology and roosting ecology is coupled with concomitantly specialized landing maneuvers.

View Article and Find Full Text PDF

For many animals, movement through complex natural environments necessitates the evolution of mechanisms that enable recovery from unexpected perturbations. Knowledge of how flying animals contend with disruptive forces is limited, however, and is nearly nonexistent for bats, the only mammals capable of powered flight. We investigated perturbation recovery in by administering a well-defined jet of compressed air, equal to 2.

View Article and Find Full Text PDF

Many endothermic animals experience variable limb temperatures, even as they tightly regulate core temperature. The limbs are often cooler than the core at rest, but because the large locomotor muscles of the limbs produce heat during exercise, they are thought to operate at or above core temperature during activity. Bats, small-bodied flying mammals with greatly elongated forelimbs, possess wings with large surfaces lacking any insulating fur.

View Article and Find Full Text PDF

We analyze the effects of morphology and wing kinematics on the performance of hovering flight. We present a simplified dynamical model with body translational and rotational degrees of freedom that incorporates the flapping, long-axis wing rotation and folding of the wing. To validate our simulation, we compare our results with direct measurements from hovering insects, hummingbirds and bats.

View Article and Find Full Text PDF

Movement ecology as an integrative discipline has advanced associated fields because it presents not only a conceptual framework for understanding movement principles but also helps formulate predictions about the consequences of movements for animals and their environments. Here, we synthesize recent studies on principles and patterns of bat movements in context of the movement ecology paradigm. The motion capacity of bats is defined by their highly articulated, flexible wings.

View Article and Find Full Text PDF

Temperature affects contractile rate properties in muscle, which may affect locomotor performance. Endotherms are known to maintain high core body temperatures, but temperatures in the periphery of the body can fluctuate. Such a phenomenon occurs in bats, whose wing musculature is relatively poorly insulated, resulting in substantially depressed temperatures in the distal wing.

View Article and Find Full Text PDF

Animals respond to changes in power requirements during locomotion by modulating the intensity of recruitment of their propulsive musculature, but many questions concerning how muscle recruitment varies with speed across modes of locomotion remain unanswered. We measured normalized average burst EMG (aEMG) for pectoralis major and biceps brachii at different flight speeds in two relatively distantly related bat species: the aerial insectivore , and the primarily fruit-eating These ecologically distinct species employ different flight behaviors but possess similar wing aspect ratio, wing loading and body mass. Because propulsive requirements usually correlate with body size, and aEMG likely reflects force, we hypothesized that these species would deploy similar speed-dependent aEMG modulation.

View Article and Find Full Text PDF

Aspect ratio (AR) is one parameter used to predict the flight performance of a bat species based on wing shape. Bats with high AR wings are thought to have superior lift-to-drag ratios and are therefore predicted to be able to fly faster or to sustain longer flights. By contrast, bats with lower AR wings are usually thought to exhibit higher manoeuvrability.

View Article and Find Full Text PDF

Unlike birds and insects, bats fly with wings composed of thin skin that envelops the bones of the forelimb and spans the area between the limbs, digits, and sometimes the tail. This skin is complex and unusual; it is thinner than typical mammalian skin and contains organized bundles of elastin and embedded skeletal muscles. These elements are likely responsible for controlling the shape of the wing during flight and contributing to the aerodynamic capabilities of bats.

View Article and Find Full Text PDF

The performance capabilities of flying animals reflect the interplay of biomechanical and physiological constraints and evolutionary innovation. Of the two extant groups of vertebrates that are capable of powered flight, birds are thought to fly more efficiently and faster than bats. However, fast-flying bat species that are adapted for flight in open airspace are similar in wing shape and appear to be similar in flight dynamics to fast-flying birds that exploit the same aerial niche.

View Article and Find Full Text PDF

We compare kinematics and wake structure over a range of flight speeds (4.0-8.2 m s(-1)) for two bats that pursue insect prey aerially, Tadarida brasiliensis and Myotis velifer Body mass and wingspan are similar in these species, but M.

View Article and Find Full Text PDF

Bat wings, like other mammalian forelimbs, contain many joints within the digits. These joints collectively affect dynamic three-dimensional (3D) wing shape, thereby affecting the amount of aerodynamic force a wing can generate. Bats are a speciose group, and show substantial variation in the number of wing joints.

View Article and Find Full Text PDF

The remarkable maneuverability of flying animals results from precise movements of their highly specialized wings. Bats have evolved an impressive capacity to control their flight, in large part due to their ability to modulate wing shape, area, and angle of attack through many independently controlled joints. Bat wings, however, also contain many bones and relatively large muscles, and thus the ratio of bats' wing mass to their body mass is larger than it is for all other extant flyers.

View Article and Find Full Text PDF