Small RNA programmed Argonautes are sophisticated cellular effector platforms known to be involved in a diverse array of functions ranging from mRNA cleavage, translational inhibition, DNA elimination, epigenetic silencing, alternative splicing and even gene activation. First observed in human cells, small RNA-induced gene activation, also known as RNAa, involves the targeted recruitment of Argonaute proteins to specific promoter sequences followed by induction of stable epigenetic changes which promote transcription. The existence of RNAa remains contentious due to its elusive mechanism.
View Article and Find Full Text PDFHematopoietic stem cell (HSC) gene therapy offers promise for the development of new treatments for a variety of hematologic disorders. However, efficient in vivo modification of HSCs has proved challenging, thus imposing constraints on the therapeutic potential of this approach. Herein, we provide a gene-targeting strategy that allows site-specific in vivo gene modification in the HSCs of mice.
View Article and Find Full Text PDFThe mouse mu-opioid receptor gene, Oprm1, currently contains 18 recognized alternatively spliced exons [Doyle, G.A., Sheng, X.
View Article and Find Full Text PDFThe mouse mu-opioid receptor gene, Oprm1, is recognized currently to contain 17 alternatively spliced exons that generate 24 splice variants encoding at least 11 morphine-binding isoforms of the receptor. Here, we identify three new MOR splice variants that contain a previously undescribed exon, exon 18, and provide evidence that they are expressed in two mouse strains. The transcripts containing the newly identified exon 18 encode two new putative mu-opioid receptor isoforms, MOR-1V and MOR-1W.
View Article and Find Full Text PDF