Adalimumab, a recombinant fully human monoclonal antibody targeting tumor necrosis factor (TNF), is approved in the United States and Europe to treat various inflammatory and autoimmune indications. Biosimilars are approved biologics highly similar, but not identical, to approved biotherapeutics. To support clinical development of PF-06410293, an adalimumab biosimilar, nonclinical studies evaluated the structural, functional, toxicologic, and toxicokinetic similarity to originator adalimumab sourced from the United States (adalimumab-US) and European Union (adalimumab-EU).
View Article and Find Full Text PDFThe dissociated agonists of the glucocorticoid receptor are a novel class of agents in clinical development for rheumatoid arthritis. PF-04171327 (fosdagrocorat) is a phosphate ester prodrug of PF-00251802 (dagrocorat), a selective high-affinity partial agonist of the glucocorticoid receptor, which is further metabolized to PF-04015475. This study evaluated the cytochrome P450 (CYP)-mediated drug-drug interaction (DDI) potential of PF-00251802 and PF-04015475 in vitro and used model-based prediction approaches to estimate clinical impact.
View Article and Find Full Text PDFIn order to evaluate the potential for CYP3A4 induction by moxidectin, midazolam pharmacokinetic (PK) parameters were compared before and after moxidectin administration. Healthy subjects received a single 8 mg dose of moxidectin and 3 single 7.5 mg doses of midazolam 3 days before, and 7 and 89 days after the moxidectin.
View Article and Find Full Text PDFAnidulafungin and voriconazole are potent antifungal agents that may provide a powerful therapeutic option over current therapies when coadministered. A non-clinical combination toxicity study was required as part of the voriconazole Paediatric Investigation Plan. Rats received anidulafungin or voriconazole alone or in combination once daily from postnatal day (PND) 21-56 with a recovery period to PND 84.
View Article and Find Full Text PDFBirth Defects Res B Dev Reprod Toxicol
February 2012
Anidulafungin, an echinocandin, is currently approved for treatment of fungal infections in adults. There is a high unmet medical need for treatment of fungal infections in neonatal patients, who may be at higher risk of infections involving bone, brain, and heart tissues. This in vivo preclinical study investigated anidulafungin distribution in plasma, bone, brain, and heart tissues in neonatal rats.
View Article and Find Full Text PDFThe pharmacokinetic properties of drugs may be altered by kinetic deuterium isotope effects. With specifically deuterated model substrates and drugs metabolized by aldehyde oxidase, we demonstrate how knowledge of the enzyme's reaction mechanism, species differences in the role played by other enzymes in a drug's metabolic clearance, and differences in systemic clearance mechanisms are critically important for the pharmacokinetic application of deuterium isotope effects. Ex vivo methods to project the in vivo outcome using deuterated carbazeran and zoniporide with hepatic systems demonstrate the importance of establishing the extent to which other metabolic enzymes contribute to the metabolic clearance mechanism.
View Article and Find Full Text PDFBackground: Anidulafungin, an echinocandin antifungal marketed for adult use, is being considered for use in pediatric populations, including neonates. The evolution of the nonclinical pediatric safety strategy for anidulafungin serves as an example of case-by-case negotiation through the European Medicines Agency pediatric investigation plan process, resulting in an acceptable juvenile rat toxicity study.
Methods: Study design challenges included animal selection, route, dose, age, and duration of dosing in relation to brain maturity, and appropriate study endpoints.
Expert Opin Drug Metab Toxicol
November 2010
Importance Of The Field: Drug-drug interactions caused by induction of metabolizing enzymes, particularly CYP3A, can impact the efficacy and safety of co-administered drugs. It is, therefore, important to understand a new compound's potential for enzyme induction and to understand how to use the induction data generated in vitro to predict potential for drug-drug interactions in vivo.
Areas Covered In This Review: Recent advances in methods for using in vitro data to predict potential for CYP3A induction in vivo are reviewed.
5-F substitution of an aminothiazole moiety within a series of thrombopoietin receptor agonists leads to potent agents with an improved hepatic safety profile in rodent toxicology studies.
View Article and Find Full Text PDFRespiratory tract bacterial strains are becoming increasingly resistant to currently marketed macrolide antibiotics. The current alternative telithromycin (1) from the newer ketolide class of macrolides addresses resistance but is hampered by serious safety concerns, hepatotoxicity in particular. We have discovered a novel series of azetidinyl ketolides that focus on mitigation of hepatotoxicity by minimizing hepatic turnover and time-dependent inactivation of CYP3A isoforms in the liver without compromising the potency and efficacy of 1.
View Article and Find Full Text PDFCytochrome P450 (P450) induction is one of the factors that can affect the pharmacokinetics of a drug molecule upon multiple dosing, and it can result in pharmacokinetic drug-drug interactions with coadministered drugs causing potential therapeutic failures. In recent years, various in vitro assays have been developed and used routinely to assess the potential for drug-drug interactions due to P450 induction. There is a desire from the pharmaceutical industry and regulatory agencies to harmonize assay methodologies, data interpretation, and the design of clinical drug-drug interaction studies.
View Article and Find Full Text PDFRecently, we disclosed a series of potent pyrimidine benzamide-based thrombopoietin receptor agonists. Unfortunately, the structural features required for the desired activity conferred physicochemical properties that were not favorable for the development of an oral agent. The physical properties of the series were improved by replacing the aminopyrimidinyl group with a piperidine-4-carboxylic acid moiety.
View Article and Find Full Text PDFDehydroepiandrosterone (DHEA), a C19 human adrenal steroid, activates peroxisome proliferator-activated receptor alpha (PPARalpha) in vivo but does not ligand-activate PPARalpha in transient transfection experiments. We demonstrate that DHEA regulates PPARalpha action by altering both the levels and phosphorylation status of the receptor. Human hepatoma cells (HepG2) were transiently transfected with the expression plasmid encoding PPARalpha and a plasmid containing two copies of fatty acyl coenzyme oxidase (FACO) peroxisome-proliferator activated receptor responsive element consensus oligonucleotide in a luciferase reporter gene.
View Article and Find Full Text PDFThe current study examined the bioactivation potential of a nonpeptidyl thrombopoietin receptor agonist, 1-(3-chloro-5-((4-(4-fluoro-3-(trifluoromethyl)phenyl)thiazol-2-yl)carbamoyl)pyridine-2-yl)piperidine-4-carboxylic acid (1), containing a 2-carboxamido-4-arylthiazole moiety in the core structure. Toxicological risks arising from P450-catalyzed C4-C5 thiazole ring opening in 1 via the epoxidation-->diol sequence were alleviated, since mass spectrometric analysis of human liver microsome and/or hepatocyte incubations of 1 did not reveal the formation of reactive acylthiourea and/or glyoxal metabolites, which are prototypic products derived from thiazole ring scission. However, 4-(4-fluoro-3-(trifluoromethyl)phenyl)thiazol-2-amine (2), the product of hydrolysis of 1 in human liver microsomes, hepatocytes, and plasma, underwent oxidative bioactivation in human liver microsomes, since trapping studies with glutathione led to the formation of two conjugates derived from the addition of the thiol nucleophile to 2 and a thiazole- S-oxide metabolite of 2.
View Article and Find Full Text PDFA series of pyrimidine benzamide-based thrombopoietin receptor agonists is described. The lead molecule contains a 2-amino-5-unsubstituted thiazole, a group that has been associated with idiosyncratic toxicity. The potential for metabolic oxidation at C-5 of the thiazole, the likely source of toxic metabolites, was removed by substitution at C-5 or by replacing the thiazole with a thiadiazole.
View Article and Find Full Text PDFThe roles of flavin-containing monooxygenases (FMOs) in the oxidation of seleno-l-methionine (SeMet) to l-methionine selenoxide (MetSeO) were investigated using cDNA-expressed human FMOs, purified rat liver FMOs, and rat liver microsomes. MetSeO and the N-2,4-dinitrophenyl-derivatives of SeMet and MetSeO were synthesized and characterized by 1H-NMR and ESI/MS. These reference compounds were then used to develop a sensitive HPLC assay to monitor SeMet oxidation to MetSeO.
View Article and Find Full Text PDFCytochrome P4503A4 (CYP3A4) is the principal drug-metabolizing enzyme in human liver. Drug-drug interactions (DDIs) caused by induction of CYP3A4 can result in decreased exposure to coadministered drugs, with potential loss of efficacy. Immortalized hepatocytes (Fa2N-4 cells) have been proposed as a tool to identify CYP3A4 inducers.
View Article and Find Full Text PDFThis article is an invited report of a symposium sponsored by the Division for Drug Metabolism of the American Society for Pharmacology and Experimental Therapeutics held at Experimental Biology 2003 in San Diego, California, April 11-15, 2003. Several members of the cytochrome P450 (P450) superfamily are induced after exposure to a variety of chemical signals, and we have gained considerable mechanistic insight into these processes over the past four decades. In addition, the expression of many P450s is suppressed in response to various endogenous and exogenous chemicals; however, relatively little is known about the molecular mechanisms involved.
View Article and Find Full Text PDFThe purpose of this study was to quantify the oxidative metabolism of dehydroepiandrosterone (3beta-hydroxy-androst-5-ene-17-one; DHEA) by liver microsomal fractions from various species and identify the cytochrome P450 (P450) enzymes responsible for production of individual hydroxylated DHEA metabolites. A gas chromatography-mass spectrometry method was developed for identification and quantification of DHEA metabolites. 7alpha-Hydroxy-DHEA was the major oxidative metabolite formed by rat (4.
View Article and Find Full Text PDFTreatment of rats with peroxisome proliferators is known to affect gene expression, including suppression of CYP2C11. The current study examined the mechanism of negative regulation of CYP2C11, comparing the effects of a classic peroxisome proliferator, nafenopin, with those of the steroid dehydroepiandrosterone (DHEA). In vivo dose-response experiments for DHEA were carried out with rats.
View Article and Find Full Text PDFThe cytochrome p450-dependent formation and subsequent interconversion of dehydroepiandrosterone (DHEA) metabolites 7 alpha-hydroxy-DHEA (7 alpha-OH-DHEA), 7 beta-hydroxy-DHEA (7 beta-OH-DHEA), and 7-oxo-DHEA was observed in human, pig, and rat liver microsomal fractions. Rat liver mitochondria and nuclei also converted DHEA to 7 alpha-OH-DHEA and 7-oxo-DHEA, but at a lower rate. With NADP(+), and less so with NAD(+), rat, pig, and human liver microsomes and rat liver mitochondria and nuclei converted 7 alpha-OH-DHEA to 7-oxo-DHEA.
View Article and Find Full Text PDF