The DNA damage response (DDR) is a vast signaling network that is robustly activated by DNA double-strand breaks, the critical lesion induced by ionizing radiation (IR). Although much of this response operates at the protein level, a critical component of the network sustains many DDR branches by modulating the cellular transcriptome. Using deep sequencing, we delineated three layers in the transcriptional response to IR in human breast cancer cells: changes in the expression of genes encoding proteins or long noncoding RNAs, alterations in genomic binding by key transcription factors, and dynamics of epigenetic markers of active promoters and enhancers.
View Article and Find Full Text PDFThe cellular response to DNA damage is vital for maintaining genomic stability and preventing undue cell death or cancer formation. The DNA damage response (DDR), most robustly mobilized by double-strand breaks (DSBs), rapidly activates an extensive signaling network that affects numerous cellular systems, leading to cell survival or programmed cell death. A major component of the DDR is the widespread modulation of gene expression.
View Article and Find Full Text PDFBackground: Gene-expression microarrays and RNA interferences (RNAi) are among the most prominent techniques in functional genomics. The combination of the two holds promise for systematic, large-scale dissection of transcriptional networks. Recent studies, however, raise the concern that nonspecific responses to small interfering RNAs (siRNAs) might obscure the consequences of silencing the gene of interest, throwing into question the ability of this experimental strategy to achieve precise network dissections.
View Article and Find Full Text PDFPou4f3 (Brn3.1, Brn3c) is a class IV POU domain transcription factor that has a central function in the development of all hair cells in the human and mouse inner ear sensory epithelia. A mutation of POU4F3 underlies human autosomal dominant non-syndromic progressive hearing loss DFNA15.
View Article and Find Full Text PDFCellular responses to DNA damage are mediated by an extensive network of signaling pathways. The ATM protein kinase is a master regulator of the response to double-strand breaks (DSBs), the most cytotoxic DNA lesion caused by ionizing radiation. ATM is the protein missing or inactive in patients with the pleiotropic genetic disorder ataxia-telangiectasia (A-T).
View Article and Find Full Text PDF