Regulatory T cells (Treg) have become increasingly relevant in the study of human disease including cancer. Treg cells have been shown to inhibit anti-tumor immune responses, and elevated Treg levels have been associated with certain types of cancer. Similarly, depletion of Tregs by various methods can also enhance anti-tumor immune responses.
View Article and Find Full Text PDFInflammatory breast cancer (IBC) is a highly aggressive subtype of breast cancer that is often characterized by ErbB2 overexpression. ErbB2 targeting is clinically relevant using trastuzumab (anti-ErbB2 antibody) and lapatinib (small-molecule ErbB1/2 inhibitor). However, acquired resistance is a common outcome even in IBC patients who show an initial clinical response, which limits the efficacy of these agents.
View Article and Find Full Text PDFPurpose: Overexpression of the breast cancer oncogene HER2 correlates with poor survival. Current HER2-directed therapies confer limited clinical benefits and most patients experience progressive disease. Because refractory tumors remain strongly HER2+, vaccine approaches targeting HER2 have therapeutic potential, but wild type (wt) HER2 cannot safely be delivered in immunogenic viral vectors because it is a potent oncogene.
View Article and Find Full Text PDFThe monoclonal antibody trastuzumab and the EGFR/HER2 tyrosine kinase inhibitor lapatinib improve the clinical outcome of patients with HER2-overexpressing breast cancer. However, the majority of metastatic cancers will eventually progress, suggesting the need for other therapies. Because HER2 overexpression persists, we hypothesized that the anti-HER2 immune response induced by cancer vaccines would be an effective strategy for treating trastuzumab- and lapatinib-refractory tumors.
View Article and Find Full Text PDF