Here we demonstrate direct ink write (DIW) additive manufacturing of carbon nanotube (CNT)/phenolic composites with heat dissipation and excellent electromagnetic interference (EMI) shielding capabilities without curing-induced deformation. Such polymer composites are valuable for protecting electronic devices from overheating and electromagnetic interference. CNTs were used as a multifunctional nanofiller to improve electrical and thermal conductivity, printability, stability during curing, and EMI shielding performance of CNT/phenolic composites.
View Article and Find Full Text PDFAdditive manufacturing (AM) facilitates the creation of materials with unique microstructural features and distinctive phenomena as compared to conventional manufacturing methods. Among the various well-fabricated AM alloys, aluminum alloys garner substantial attention due to their extensive applications in the automotive and aerospace industries. In this work, an Al6xxx alloy is successfully fabricated with outstanding performance.
View Article and Find Full Text PDFThe Ti-6Al-4V alloy is the most common biomaterial used for bone replacements and reconstructions. Despite its advantages, the Ti-6Al-4V has a high stiffness that can cause stress-shielding. In this work, we demonstrated that the selective laser melting (SLM) technology could be used to fabricate porosity in Ti-6Al-4V extra low interstitial (ELI) to reduce its stiffness while improving cell adhesion and proliferation.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
March 2020
A semi-degradable Ti + Mg composite with superior compression and cytotoxicity properties have been successfully fabricated using ink jet 3D printing followed by capillary mediated pressureless infiltration technique targeting orthopaedic implant applications. The composite exhibited low modulus (~5.2 GPa) and high ultimate compressive strength (~418 MPa) properties matching that of the human cortical bone.
View Article and Find Full Text PDF