Publications by authors named "Sharon Lim"

van der Waals heterojunctions based on transition-metal dichalcogenides (TMDs) offer advanced strategies for manipulating light-emitting and light-harvesting behaviors. A crucial factor determining the light-material interaction is in the band alignment at the heterojunction interface, particularly the distinctions between type-I and type-II alignments. However, altering the band alignment from one type to another without changing the constituent materials is exceptionally difficult.

View Article and Find Full Text PDF

With increasing population and limited resources, a potential route for improving sustainability is increased reuse of waste materials. By re-looking at wastes, interesting properties and multifunctionalities can be discovered in materials previously explored. Despite years of research on bio-compatible fish scales, there is limited study on the fluorescence property of this abundant waste material.

View Article and Find Full Text PDF

Glucose uptake is essential for cancer glycolysis and is involved in non-shivering thermogenesis of adipose tissues. Most cancers use glycolysis to harness energy for their infinite growth, invasion and metastasis. Activation of thermogenic metabolism in brown adipose tissue (BAT) by cold and drugs instigates blood glucose uptake in adipocytes.

View Article and Find Full Text PDF

Bacillus Calmette-Guérin (BCG) is the gold standard adjuvant treatment for non-muscle-invasive bladder cancer (NMIBC). However, given the current global shortage of BCG, new treatments are needed. We evaluated tumor microenvironment markers as potential BCG alternatives for NMIBC treatment.

View Article and Find Full Text PDF

In artificial van der Waals (vdW) layered devices, twisting the stacking angle has emerged as an effective strategy to regulate the electronic phases and optical properties of these systems. Along with the twist registry, the lattice reconstruction arising from vdW interlayer interaction has also inspired significant research interests. The control of twist angles is significantly important because the moiré periodicity determines the electron propagation length on the lattice and the interlayer electron-electron interactions.

View Article and Find Full Text PDF

With their special hierarchical fractal and highly symmetric formation, silver dendrites have a large surface area and plentiful active sites at edges, which have allowed them to exhibit unique properties ranging from superhydrophobic surfaces to biosensors. Yet, many suggested synthesis processes either require a long reaction time or risk contamination from sacrificial elements. Limited research in directing while enhancing the growth of these silver dendrites also hinders the application of these unique microstructures as site-selective hydrophobicity of surfaces and location-dependent SERS (surface-enhanced Raman spectroscopy).

View Article and Find Full Text PDF

Background: Preservatives are usually added to a wide array of consumer products to prevent growth of microbes and to prevent product destabilization and degradation. However, many of these preservatives are common skin sensitizers and may cause allergic contact dermatitis. The amount of preservatives may vary per country or region according to their respective legislation and may be reported in differences in prevalence rates of contact dermatitis.

View Article and Find Full Text PDF

Background: encodes the Gα (stimulatory G-protein alpha subunit) protein, which mediates G protein-coupled receptor (GPCR) signaling. mutations cause developmental delay, short stature, and skeletal abnormalities in a syndrome called Albright's hereditary osteodystrophy. Because of imprinting, mutations on the maternal allele also cause obesity and hormone resistance (pseudohypoparathyroidism).

View Article and Find Full Text PDF

A class of compounds sharing the properties of 2D materials and electrolytes, namely 2D electrolytes is described theoretically and demonstrated experimentally. 2D electrolytes dissociate in different solvents, such as water, and become electrically charged. The chemical and physical properties of these compounds can be controlled by external factors, such as pH, temperature, electric permittivity of the medium, and ionic concentration.

View Article and Find Full Text PDF

Atomic-scale defects in two-dimensional transition metal dichalcogenides (TMDs) often dominate their physical and chemical properties. Introducing defects in a controllable manner can tailor properties of TMDs. For example, chalcogen atom defects in TMDs were reported to trigger phase transition, induce ferromagnetism, and drive superconductivity.

View Article and Find Full Text PDF
Article Synopsis
  • * The photodetector has impressive metrics, achieving a responsivity of 708 A/W and an external quantum efficiency of 82,700% at 1064 nm, with potential for even broader detection capabilities beyond 8 µm.
  • * The unique pentagonal atomic structure of layered PdSe results in anisotropic properties, making it a promising material for innovative infrared optoelectronic applications.
View Article and Find Full Text PDF

We report for the first time the ability to direct and control the migration path of silver nanoparticles across graphene oxide (GO). With the help of a focused laser beam, we demonstrated choreographed nanoparticle assembly on GO a directed electric-field. Silver migration and the resultant dendrite formation on GO were characterized through electrical testing coupled with fluorescence microscopy.

View Article and Find Full Text PDF

We report a functional hybrid made of silver nanoparticles (AgNPs) embedded in an amorphous aluminium oxide (alumina) film. This laser-initiated process allows formation of AgNPs and amorphous alumina in localized regions defined by the scanning laser beam. Due to metal enhanced fluorescence, this hybrid exhibits strong blue fluorescence emission under ultraviolet excitation.

View Article and Find Full Text PDF

Intrinsic and evasive antiangiogenic drug (AAD) resistance is frequently developed in cancer patients, and molecular mechanisms underlying AAD resistance remain largely unknown. Here we describe AAD-triggered, lipid-dependent metabolic reprogramming as an alternative mechanism of AAD resistance. Unexpectedly, tumor angiogenesis in adipose and non-adipose environments is equally sensitive to AAD treatment.

View Article and Find Full Text PDF

Chronic myeloid leukemia (CML) is a myeloproliferative disease caused by bcr-abl1, a constitutively active tyrosine kinase fusion gene responsible for an abnormal proliferation of leukemic stem cells (LSCs). Inhibition of BCR-ABL1 kinase activity offers long-term relief to CML patients. However, for a proportion of them, BCR-ABL1 inhibition will become ineffective at treating the disease, and CML will progress to blast crisis (BC) CML with poor prognosis.

View Article and Find Full Text PDF

Angiogenesis plays an instrumental role in the modulation of adipose tissue mass and metabolism. Targeting adipose vasculature provides an outstanding opportunity for treatment of obesity and metabolic disorders. Here, we report the physiological functions of VEGFR1 in the modulation of adipose angiogenesis, obesity, and global metabolism.

View Article and Find Full Text PDF

Understanding the molecular mechanisms regulating beige adipocyte formation may lead to the development of new therapies to combat obesity. Here, we report a miRNA-based autocrine regulatory pathway that controls differentiation of preadipocytes into beige adipocytes. We identify miR-327 as one of the most downregulated miRNAs targeting growth factors in the stromal-vascular fraction (SVF) under conditions that promote white adipose tissue (WAT) browning in mice.

View Article and Find Full Text PDF

Cancer metastasis can occur at the early stage of tumor development when a primary tumor is at the microscopic size. In particular, the interaction of malignant cells with other cell types including cancer-associated fibroblasts (CAF) in promoting metastasis at the early stage of tumor development remains largely unknown. Here, we investigated the role of CAFs in facilitating the initial events of cancer metastasis when primary tumors were at microscopic sizes.

View Article and Find Full Text PDF
Article Synopsis
  • * Exposing mice to low temperatures resulted in browning of visceral fat, which led to reduced body weight and insulin sensitivity despite increased food intake, showcasing a potential method for improving metabolic health.
  • * Surgical removal or genetic alteration of specific fat-related genes showed detrimental effects, suggesting that enhancing the browning of visceral fat could be a new therapeutic approach to tackle obesity and diabetes.
View Article and Find Full Text PDF

Many types of cancer develop in close association with highly vascularized adipose tissues. However, the role of adipose pre-existing vascular beds on tumor growth and angiogenesis is unknown. Here we report that pre-existing microvascular density in tissues where tumors originate is a crucial determinant for tumor growth and neovascularization.

View Article and Find Full Text PDF

Vascular pericytes, an important cellular component in the tumor microenvironment, are often associated with tumor vasculatures, and their functions in cancer invasion and metastasis are poorly understood. Here we show that PDGF-BB induces pericyte-fibroblast transition (PFT), which significantly contributes to tumor invasion and metastasis. Gain- and loss-of-function experiments demonstrate that PDGF-BB-PDGFRβ signaling promotes PFT both in vitro and in in vivo tumors.

View Article and Find Full Text PDF

A high-performance 2D photodetector based on a bilayer structure comprising a WSe2 monolayer and CH3 NH3 PbI3 organolead halide perovskite is reported. High performance is realized by modification of the WSe2 monolayer with laser healing and perovskite functionalization. After modification, the output of the device was three orders of magnitude better than the pristine device; the performance is superior to that of most of the 2D photodetectors based on transition-metal-dichalcogenides (TMDs).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiondcm3e98c3cha2avoi5cd3efh802dh0me): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once