Publications by authors named "Sharon Leavitt"

Chemical interactions have posed a big challenge in toxicity characterization and human health risk assessment of environmental mixtures. To characterize the impacts of chemical interactions on protein and cytotoxicity responses to environmental mixtures, we established a systems biology approach integrating proteomics, bioinformatics, statistics, and computational toxicology to measure expression or phosphorylation levels of 21 critical toxicity pathway regulators and 445 downstream proteins in human BEAS-2B cells treated with 4 concentrations of nickel, 2 concentrations each of cadmium and chromium, as well as 12 defined binary and 8 defined ternary mixtures of these metals in vitro. Multivariate statistical analysis and mathematical modeling of the metal-mediated proteomic response patterns showed a high correlation between changes in protein expression or phosphorylation and cellular toxic responses to both individual metals and metal mixtures.

View Article and Find Full Text PDF

The mouse liver tumorigenic conazole fungicides triadimefon and propiconazole have previously been shown to be in vivo mouse liver mutagens in the Big Blue™ transgenic mutation assay when administered in feed at tumorigenic doses, whereas the nontumorigenic conazole myclobutanil was not mutagenic. DNA sequencing of the mutants recovered from each treatment group as well as from animals receiving control diet revealed that propiconazole- and triadimefon-induced mutations do not represent general clonal expansion of background mutations, and support the hypothesis that they arise from the accumulation of endogenous reactive metabolic intermediates within the liver in vivo. We therefore measured the spectra of endogenous DNA adducts in the livers of mice from these studies to determine if there were quantitative or qualitative differences between mice receiving tumorigenic or nontumorigenic conazoles compared to concurrent control animals.

View Article and Find Full Text PDF

The mouse liver tumorigenic conazole fungicides triadimefon and propiconazole have previously been shown to be in vivo mouse liver mutagens in the Big Blue transgenic mutation assay when administered in feed at tumorigenic doses, whereas the non-tumorigenic conazole myclobutanil was not mutagenic. DNA sequencing of the mutants recovered from each treatment group as well as from animals receiving control diet was conducted to gain additional insight into the mode of action by which tumorigenic conazoles induce mutations. Relative dinucleotide mutabilities (RDMs) were calculated for each possible dinucleotide in each treatment group and then examined by multivariate statistical analysis techniques.

View Article and Find Full Text PDF

Triadimefon, propiconazole and myclobutanil are conazoles, an important class of agricultural and therapeutic fungicides. Triadimefon and propiconazole are mouse liver tumorigens, while myclobutanil is not. All three conazoles are generally inactive in short-term genotoxicity tests.

View Article and Find Full Text PDF

Dibenzo[a,l]pyrene (DB[a,l]P) and benzo[a]pyrene (B[a]P) are carcinogenic polycyclic aromatic hydrocarbons (PAHs) that are each capable of forming a variety of covalent adducts with DNA. Some of the DNA adducts formed by these PAHs have been demonstrated to spontaneously depurinate, producing apurinic (AP) sites. The significance of the formation of AP sites as a key event in the production of mutations and tumours by PAHs has been a subject of ongoing investigations.

View Article and Find Full Text PDF

Conazoles are a class of azole based fungicides used in agriculture and as pharmaceutical products. They have a common mode of antifungal action through inhibition of ergosterol biosynthesis. Some members of this class have been shown to be hepatotoxic and will induce mouse hepatocellular tumors and/or rat thyroid follicular cell tumors.

View Article and Find Full Text PDF

Conazoles comprise a class of fungicides used in agriculture and as pharmaceutical products. The fungicidal properties of conazoles are due to their inhibition of ergosterol biosynthesis. Certain conazoles are tumorigenic in rodents; both propiconazole and triadimefon are hepatotoxic and hepatotumorigenic in mice, while myclobutanil is not a mouse liver tumorigen.

View Article and Find Full Text PDF