Anthracycline-related cardiotoxicity correlates with cardiac anthracycline accumulation and bioactivation to secondary alcohol metabolites or reactive oxygen species (ROS), such as superoxide anion (O₂·⁻) and hydrogen peroxide H₂O₂). We reported that in an ex vivo human myocardial strip model, 3 or 10 μM amrubicin [(7S,9S)-9-acetyl-9-amino-7-[(2-deoxy-β-D-erythro-pentopyranosyl)oxy]-7,8,9,10-tetrahydro-6,11-dihydroxy-5,12-napthacenedione hydrochloride] accumulated to a lower level compared with equimolar doxorubicin or epirubicin (J Pharmacol Exp Ther 341:464-473, 2012). We have characterized how amrubicin converted to ROS or secondary alcohol metabolite in comparison with doxorubicin (that formed both toxic species) or epirubicin (that lacked ROS formation and showed an impaired conversion to alcohol metabolite).
View Article and Find Full Text PDFAntitumor anthracyclines such as doxorubicin and epirubicin are known to cause cardiotoxicity that correlates with anthracycline accumulation in the heart. The anthracycline amrubicin [(7S,9S)-9-acetyl-9-amino-7-[(2-deoxy-β-d-erythro-pentopyranosyl)oxy]-7,8,9,10-tetrahydro-6,11-dihydroxy-5,12-napthacenedione hydrochloride] has not shown cardiotoxicity in laboratory animals or patients in approved or investigational settings; therefore, we conducted preclinical work to characterize whether amrubicin attained lower levels than doxorubicin or epirubicin in the heart. Anthracyclines were evaluated in ex vivo human myocardial strips incubated in plasma to which anthracycline concentrations of 3 or 10 μM were added.
View Article and Find Full Text PDFPurpose: Multi-drug resistance and cumulative cardiotoxicity are major limitations for the clinical use of anthracyclines. Here, we evaluated and compared the cross-resistance of amrubicin, a third-generation synthetic anthracycline and potent topoisomerase (topo)-II inhibitor with little or no observed cardiotoxicity to other anthracyclines and the topo-II inhibitor etoposide in drug-resistant tumor models in order to elucidate its potential mechanisms of action.
Methods: Amrubicin activity was assessed in multi-drug-resistant cell lines and human tumor explants using cytotoxicity assays, confocal microscopy, fluorescence time-lapse imaging, flow cytometry, immunoblotting, and gene expression profiling techniques.
Background: The cytidine nucleoside analogs azacitidine (AZA) and decitabine (DAC) are used for the treatment of patients with myelodysplastic syndromes and acute myeloid leukemia (AML). Few non-clinical studies have directly compared the mechanisms of action of these agents in a head-to-head fashion, and the agents are often viewed as mechanistically similar DNA hypomethylating agents. To better understand the similarities and differences in mechanisms of these drugs, we compared their in vitro effects on several end points in human AML cell lines.
View Article and Find Full Text PDFB-cell chronic lymphocytic leukemia (B-CLL) is a lymphoproliferative disorder characterized by the surface expression of CD20, CD5 antigens, as well as the receptor CD40. Activation of CD40 by its ligand (CD40L) induces proliferation and rescues the cells from spontaneous and chemotherapy-induced apoptosis. CD40 activation also induces secretion of cytokines, such as IL-6, IL-10, TNF-alpha, IL-8, and GM-CSF, which are involved in tumor cell survival, migration, and interaction with cells in the tumor microenvironment.
View Article and Find Full Text PDFRecombinant interleukin-2 (rIL-2) is a pleiotropic cytokine that activates select immune effector cell responses associated with antitumor activity, including antibody-dependent cellular cytotoxicity (ADCC). Rituximab is an anti-CD20 monoclonal antibody that activates ADCC in non-Hodgkin lymphoma (NHL). The ability of rIL-2 to augment rituximab-dependent tumor responses was investigated.
View Article and Find Full Text PDFThe lack of a robust small-animal model for hepatitis C virus (HCV) has hindered the discovery and development of novel drug treatments for HCV infections. We developed a reproducible and easily accessible xenograft mouse efficacy model in which HCV RNA replication is accurately monitored in vivo by real-time, noninvasive whole-body imaging of gamma-irradiated SCID mice implanted with a mouse-adapted luciferase replicon-containing Huh-7 cell line (T7-11). The model was validated by demonstrating that both a small-molecule NS3/4A protease inhibitor (BILN 2061) and human alpha interferon (IFN-alpha) decreased HCV RNA replication and that treatment withdrawal resulted in a rebound in replication, which paralleled clinical outcomes in humans.
View Article and Find Full Text PDFPurpose: Fms-like tyrosine kinase 3 (FLT3) encodes a receptor tyrosine kinase (RTK) for which activating mutations have been identified in a proportion of acute myelogenous leukemia (AML) patients and associated with poor clinical prognosis. Given the relevance of FLT3 mutations in AML, we investigated the activity of CHIR-258, an orally active, multitargeted small molecule, with potent activity against FLT3 kinase and class III, IV, and V RTKs involved in endothelial and tumor cell proliferation in AML models.
Experimental Design: CHIR-258 was tested on two human leukemic cell lines in vitro and in vivo with differing FLT3 mutational status [MV4;11 cells express FLT3 internal tandem duplications (ITD) versus RS4;11 cells with wild-type (WT) FLT3].
Purpose: To evaluate the therapeutic and biological effects of CHIR-258, an orally bioavailable, potent inhibitor of class III-V receptor tyrosine kinases, in colon cancer models.
Experimental Design: The pharmacologic activity of CHIR-258 was characterized by monitoring target modulation as well as by evaluating the antitumor and antiangiogenic effects in human colon xenograft models.
Results: CHIR-258 inhibits vascular endothelial growth factor receptor 1/2, fibroblast growth factor receptor 1/3, and platelet-derived growth factor receptor beta (PDGFRbeta) and shows both antitumor and antiangiogenic activities in vivo.
To evaluate whether beta-catenin signaling has a role in the regulation of angiogenesis in colon cancer, a series of angiogenesis-related gene promoters was analyzed for beta-catenin/TCF binding sites. Strikingly, the gene promoter of human vascular endothelial growth factor (VEGF, or VEGF-A) contains seven consensus binding sites for beta-catenin/TCF. Analysis of laser capture microdissected human colon cancer tissue indicated a direct correlation between up-regulation of VEGF-A expression and adenomatous polyposis coli (APC) mutational status (activation of beta-catenin signaling) in primary tumors.
View Article and Find Full Text PDF