Publications by authors named "Sharon L Ashworth"

The formation of biomimetic lipid membranes has the potential to provide insights into cellular lipid membrane dynamics. The construction of such membranes necessitates not only the utilization of appropriate lipids, but also physiologically relevant substrate/support materials. The substrate materials employed have been shown to have demonstrable effects on the behavior of the overlying lipid membrane, and thus must be studied before use as a model cushion support.

View Article and Find Full Text PDF

Acute ischemic kidney injury results in marked increases in local and systemic cytokine levels. IL-1alpha, IL-6, and TNF-alpha orchestrate various inflammatory reactions influencing endothelial permeability by altering cell-to-cell and cell-to-extracellular matrix attachments. To explore the role of actin and the regulatory proteins RhoA and cofilin in this process, microvascular endothelial cells (MS1) were exposed to individual cytokines or a cytokine cocktail.

View Article and Find Full Text PDF

In vivo fluorescence imaging, using confocal or multiphoton microscopes, provides a powerful method to analyze kidney function in experimental animals. In this review, the preparation used for physiological studies in rats is described. A variety of fluorescent probes are available to study glomerular permeability, renal blood flow, peritubular capillary permeability, cell ion concentrations, tubule transport properties, and the functional status of renal cells.

View Article and Find Full Text PDF

Ischemia and sepsis lead to endothelial cell damage, resulting in compromised microvascular flow in many organs. Much remains to be determined regarding the intracellular structural events that lead to endothelial cell dysfunction. To investigate potential actin cytoskeletal-related mechanisms, ATP depletion was induced in mouse pancreatic microvascular endothelial cells (MS1).

View Article and Find Full Text PDF

Understanding molecular mechanisms of pathophysiology and disease processes requires the development of new methods for studying proteins in animal tissues and organs. Here, we describe a method for adenoviral-mediated gene transfer into tubule or endothelial cells of the rat kidney. The left kidney of an anesthetized rat was exposed and the lumens of superficial proximal tubules or vascular welling points were microinfused, usually for 20 min.

View Article and Find Full Text PDF

Ischemic-induced cell injury results in rapid duration-dependent actin-depolymerizing factor (ADF)/cofilin-mediated disruption of the apical microvilli microfilament cores. Because intestinal microvillar microfilaments are bound and stabilized in the terminal web by the actin-binding protein tropomyosin, we questioned whether a protective effect of tropomyosin localization to the terminal web of the proximal tubule microfilament cores is disrupted during ischemic injury. With tropomyosin-specific antibodies, we examined rat cortical sections under physiological conditions and following ischemic injury by confocal microscopy.

View Article and Find Full Text PDF

Ischemic injury induces actin cytoskeleton disruption and aggregation, but mechanisms affecting these changes remain unclear. To determine the role of actin-depolymerizing factor (ADF)/ cofilin participation in ischemic-induced actin cytoskeletal breakdown, we utilized porcine kidney cultured cells, LLC-PK(A4.8), and adenovirus containing wild-type (wt), constitutively active, and inactive Xenopus ADF/cofilin linked to green fluorescence protein [XAC(wt)-GFP] in an ATP depletion model.

View Article and Find Full Text PDF