The salivary epithelium initiates as a solid mass of epithelial cells that are organized into a primary bud that undergoes morphogenesis and differentiation to yield bilayered acini consisting of interior secretory acinar cells that are surrounded by contractile myoepithelial cells in mature salivary glands. How the primary bud transitions into acini has not been previously documented. We document here that the outer epithelial cells subsequently undergo a vertical compression as they express smooth muscle α-actin and differentiate into myoepithelial cells.
View Article and Find Full Text PDFEpithelial organ morphogenesis involves reciprocal interactions between epithelial and mesenchymal cell types to balance progenitor cell retention and expansion with cell differentiation for evolution of tissue architecture. Underlying submandibular salivary gland branching morphogenesis is the regulated proliferation and differentiation of perhaps several progenitor cell populations, which have not been characterized throughout development, and yet are critical for understanding organ development, regeneration, and disease. Here we applied a serial multiplexed fluorescent immunohistochemistry technology to map the progressive refinement of the epithelial and mesenchymal cell populations throughout development from embryonic day 14 through postnatal day 20.
View Article and Find Full Text PDFThere is a need for an artificial salivary gland as a long-term remedy for patients suffering from salivary hypofunction, a leading cause of chronic xerostomia (dry mouth). Current salivary gland tissue engineering approaches are limited in that they either lack sufficient physical cues and surface area needed to facilitate epithelial cell differentiation, or they fail to provide a mechanism for assembling an interconnected branched network of cells. We have developed highly-ordered arrays of curved hemispherical "craters" in polydimethylsiloxane (PDMS) using wafer-level integrated circuit (IC) fabrication processes, and lined them with electrospun poly-lactic-co-glycolic acid (PLGA) nanofibers, designed to mimic the three-dimensional (3-D) in vivo architecture of the basement membrane surrounding spherical acini of salivary gland epithelial cells.
View Article and Find Full Text PDFEpithelial cell types typically lose apicobasal polarity when cultured on 2D substrates, but apicobasal polarity is required for directional secretion by secretory cells, such as salivary gland acinar cells. We cultured salivary gland epithelial cells on poly(lactic-co-glycolic acid) (PLGA) nanofiber scaffolds that mimic the basement membrane, a specialized extracellular matrix, and examined cell proliferation and apicobasal polarization. Although cells proliferated on nanofibers, chitosan-coated nanofiber scaffolds stimulated proliferation of salivary gland epithelial cells.
View Article and Find Full Text PDFNanofiber scaffolds have been useful for engineering tissues derived from mesenchymal cells, but few studies have investigated their applicability for epithelial cell-derived tissues. In this study, we generated nanofiber (250 nm) or microfiber (1200 nm) scaffolds via electrospinning from the polymer, poly-l-lactic-co-glycolic acid (PLGA). Cell-scaffold contacts were visualized using fluorescent immunocytochemistry and laser scanning confocal microscopy.
View Article and Find Full Text PDFThe interstitial extracellular matrix (ECM) and epithelial-cell associated basement membrane (BM) play critical roles in the morphogenesis and differentiation of developing salivary glands. Early studies used ex vivo organ culture and tissue recombination methods to identify the importance of the ECM in organ development. Incorporation of transgenic mice and molecular tools has facilitated progress in our understanding of the mechanisms by which ECM proteins influence SMG development.
View Article and Find Full Text PDFCleft formation is the initial step in submandibular salivary gland (SMG) branching morphogenesis, and may result from localized actomyosin-mediated cellular contraction. Since ROCK regulates cytoskeletal contraction, we investigated the effects of ROCK inhibition on mouse SMG ex vivo organ cultures. Pharmacological inhibitors of ROCK, isoform-specific ROCK I but not ROCK II siRNAs, as well as inhibitors of myosin II activity stalled clefts at initiation.
View Article and Find Full Text PDFBackground: The ErbB2/Her2/Neu receptor tyrosine kinase is amplified in approximately 30% of human breast cancers. Phosphorylation of the translation initiation factor, eIF2alpha inhibits global protein synthesis and activates a stress signaling and growth suppressive program. We have shown that forced phosphorylation of eIF2alpha can suppress head and neck, colorectal carcinoma and multiple myeloma tumor growth and/or survival.
View Article and Find Full Text PDFEndoplasmic reticulum (ER) stress signaling can be mediated by the ER kinase PERK, which phosphorylates its substrate eIF2alpha. This in turn, results in translational repression and the activation of downstream programs that can limit cell growth through cell cycle arrest and/or apoptosis. These responses can also be initiated by perturbations in cell adhesion.
View Article and Find Full Text PDF