The advancements in the areas of wearable devices and flexible electronic skin have led to the synthesis of scalable, ultrasensitive sensors to detect and differentiate multimodal stimuli and dynamic human movements. Herein, we reveal a novel architecture of an epidermal sensor fabricated by sandwiching the buckypaper between the layers of poly(dimethylsiloxane) (PDMS). This mechanically robust sensor can be conformally adhered on skin and has the perception capability to detect real-time transient human motions and the multimodal mechanical stimuli of stretching, bending, tapping, and twisting.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2021
The ever-growing bridge between stretchable electronic devices and wearable healthcare applications constitutes a significant challenge for discovery of novel materials for ultrasensitive wide-range healthcare monitoring. Herein, we propose a simplistic, amenable, cost-effective method for synthesis of a vertically aligned carbon nanotube (VACNT)/poly(dimethylsiloxane) (PDMS) thin-film composite structure for robust stretchable sensors with a full range of human motion and multimode mechanical stimuli detection functionalities. Notably, the sensor features the best reported response of carbon nanotube (CNT)-based sensors with extensive multiscale healthcare monitoring of subtle and vigorous ambulations ranging from 0.
View Article and Find Full Text PDFAn attempt has been made to understand the thermodynamic mechanism study of the low-pressure chemical vapor deposition (LPCVD) process during single-layer graphene (SLG) growth as it is the most debatable part of the CVD process. The intensive studies are being carried out worldwide to enhance the quality of LPCVD-grown graphene up to the level of mechanically exfoliated SLG. The mechanism and processes have been discussed earlier by several research groups during the variation in different parameters.
View Article and Find Full Text PDFIn the present scenario, conducting and lightweight flexible polymer nanocomposites rival metallic and inorganic semiconducting materials as highly sensitive piezoresistive force sensors. Herein, we explore the feasibility of vertically aligned carbon nanotube (VACNT) nanocomposites impregnated in different polymer matrixes, envisioned as highly efficient piezoresistors in sensor applications. Polymer nanocomposites are selectively designed and fabricated using three different polymer matrixes, i.
View Article and Find Full Text PDF