Recent studies have identified a phenomenon in which ciliated protozoa engulf Salmonella and the intra-protozoal environment hyperactivates virulence gene expression and provides a venue for conjugal transfer of antibiotic resistance plasmids. The former observation is relegated to Salmonella bearing the SGI1 multiresistance integron while the latter phenomenon appears to be a more generalized event for recipient Salmonella. Our previous studies have assessed virulence gene hyperexpression only with protozoa from the bovine rumen while conjugal transfer has been demonstrated in rumen protozoa from cattle and goats.
View Article and Find Full Text PDFMultiple-antibiotic-resistant Salmonella enterica serotype Typhimurium is a food-borne pathogen that may be more virulent than related strains lacking the multiresistance phenotype. Salmonella enterica serotype Typhimurium phage type DT104 is the most prevalent of these multiresistant/hypervirulent strains. Multiresistance in DT104 is conferred by an integron structure, designated Salmonella genomic island 1 (SGI1), while we recently demonstrated DT104 hyperinvasion mediated by rumen protozoa (RPz) that are normal flora of cattle.
View Article and Find Full Text PDFMultiple-antibiotic-resistant Salmonella enterica serotype Typhimurium is a food-borne pathogen that has been purported to be more virulent than antibiotic-sensitive counterparts. The paradigm for this multiresistant/hyperpathogenic phenotype is Salmonella enterica serotype Typhimurium phage type DT104 (DT104). The basis for the multiresistance in DT104 is related to an integron structure designated SGI1, but factors underlying hyperpathogenicity have not been completely identified.
View Article and Find Full Text PDFCampylobacter spp. are a major contaminant of poultry. Eating undercooked chicken and handling raw poultry have been identified as risk factors for campylobacteriosis in humans.
View Article and Find Full Text PDF