Publications by authors named "Sharon F Edwards"

Objective: Approximately 30% of patients with epilepsy do not experience full seizure control on their antiseizure drug (ASD) regimen. Historically, screening for novel ASDs has relied on evaluating efficacy following a single administration of a test compound in either acute electrical or chemical seizure induction. However, the use of animal models of spontaneous seizures and repeated administration of test compounds may better differentiate novel compounds.

View Article and Find Full Text PDF

Despite the availability of more than 25 antiseizure drugs on the market, approximately 30% of patients with epilepsy still suffer from seizures. Thus, the epilepsy therapy market has a great need for a breakthrough drug that will aid pharmacoresistant patients. In our previous study, we discovered a vitamin K analogue, , which displayed modest antiseizure activity in zebrafish and mouse seizure models.

View Article and Find Full Text PDF

Objective: The lamotrigine-resistant amygdala kindling model uses repeated administration of a low dose of lamotrigine during the kindling process to produce resistance to lamotrigine, which also extends to some other antiseizure drugs (ASDs). This model of pharmacoresistant epilepsy has been incorporated into the testing scheme utilized by the Epilepsy Therapy Screening Program (ETSP). Although some ASDs have been evaluated in this model, a comprehensive evaluation of ASD prototypes has not been reported.

View Article and Find Full Text PDF

Objective: The mouse 6 Hz model of psychomotor seizures is a well-established and commonly used preclinical model for antiseizure drug (ASD) discovery. Despite its widespread use both in the identification and differentiation of novel ASDs in mice, a corresponding assay in rats has not been developed. We established a method for 6 Hz seizure induction in rats, with seizure behaviors similar to those observed in mice including head nod, jaw clonus, and forelimb clonus.

View Article and Find Full Text PDF

We have identified a large expansion of an ATTCT repeat within intron 9 of ATXN10 on chromosome 22q13.31 as the genetic mutation of spinocerebellar ataxia type 10 (SCA10). Our subsequent studies indicated that neither a gain nor a loss of function of ataxin 10 is likely the major pathogenic mechanism of SCA10.

View Article and Find Full Text PDF

All DNA repeats known to undergo expansion leading to human neurodegenerative disease can form one, or several, alternative conformations, including hairpin, slipped strand, triplex, quadruplex, or unwound DNA structures. These alternative structures may interfere with the normal cellular processes of transcription, DNA repair, replication initiation, or polymerase elongation and thereby contribute to the genetic instability of these repeat tracts. We show that (CCTG) x (CAGG) repeats, in the first intron of the ZNF9 gene associated with myotonic dystrophy type 2, form slipped-strand DNA structures in a length-dependent fashion upon reduplexing.

View Article and Find Full Text PDF

The generation of long uninterrupted DNA repeats is important for the study of repeat instability associated with several human genetic diseases, including myotonic dystrophy type 1. However, obtaining defined lengths of long repeats in vitro has been problematic. Strand slippage and/or DNA secondary structure formation may prevent efficient ligation.

View Article and Find Full Text PDF